• Title/Summary/Keyword: FeTi

Search Result 1,423, Processing Time 0.026 seconds

Synthesis and Electromagnetic Wave Absorbing Property of BaTiO3@Fe Nanofibers with Core-Shell Structure (코어-쉘 구조를 갖는 BaTiO3@Fe 나노섬유의 합성 및 전자파 흡수 특성)

  • Lee, Young-In;Jang, Dae-Hwan;Sung, Ki-Hoon;Lee, Kyuman;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.38-42
    • /
    • 2016
  • $BaTiO_3$-coated Fe nanofibers are synthesized via a three-step process. ${\alpha}-Fe_2O_3$ nanofibers with an average diameter of approximately 200 nm are first prepared using an electrospinning process followed by a calcination step. The $BaTiO_3$ coating layer on the nanofiber is formed by a sol-gel process, and a thermal reduction process is then applied to the core-shell nanofiber to selectively reduce the ${\alpha}-Fe_2O_3$ to Fe. The thickness of the $BaTiO_3$ shell is controlled by varying the reaction time. To evaluate the electromagnetic (EM) wave-absorbing abilities of the $BaTiO_3@Fe$ nanofiber, epoxy-based composites containing the nanofibers are fabricated. The composites show excellent EM wave absorption properties where the power loss increases to the high frequency region without any degradation. Our results demonstrate that the $BaTiO_3@Fe$ nanofibers obtained in this work are attractive candidates for electromagnetic wave absorption applications.

Magnetic and Photo-catalytic Properties of Nanocrystalline Fe Doped $TiO_2$ Powder Synthesized by Mechanical Alloying

  • Uhm, Y.R.;Woo, S.H.;Lee, M.K.;Rhee, C.K.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.955-956
    • /
    • 2006
  • Fe-doped $TiO_2$ nanopowders were prepared by mechanical alloying (MA) varying Fe contents up to 8.0 wt.%. The UV-vis absorption showed that the UV absorption for the Fe-doped powder shifted to a longer wavelength (red shift). The absorption threshold depends on the concentration of nano-size Fe dopant. As the Fe concentration increased up to 4 wt.%, the UV-vis absorption and the magnetization were increased. The benefical effect of Fe doping for photocatalysis and ferromagnetism had the critical dopant concentration of 4 wt.%. Based on the UV absorption and magnetization, the dopant level is localized to the valence band of $TiO_2$.

  • PDF

Studies on Marine Sediments of the Korean Seas. I. Concentrations and Distributions of Some Ceochemical Elements in Sediments from the Sea off Eastern Korea (한국근해의 해저토에 관한 연구 I. 동해 해저토의 지화학적 성분의 함량과 분포)

  • Choe, Sang
    • 한국해양학회지
    • /
    • v.1
    • /
    • pp.1-15
    • /
    • 1971
  • Some major and minor geochemical contents, such as Zr, Br, Ni, Sr, Zn, Mn, Ti and Fe, of ninety-seven sediment samples from the sea off eastern Korea have been analyzed by the fluorescence spectrometric techniques. Concentrations of elements showed 22-962ppm Zr(averaging 194.4ppm), tr-220 ppm Br(averaging 138.2ppm), 31-141ppm Ni(averaging 89.1ppm), 118-3,494ppm Sr(averaging 448.6ppm) 27-134ppm Zn(averaging 92.5ppm), 38-1,043ppm Mn(averaging 664.2ppm), 0.04-0.42% Ti(averaging 0.29%) and 0.57-4.02% Fe(averaging 2.76%). The ratios of Zn/Ti 10$\^$3/, An/Fe 10$\^$3/ and Ti/Fe were 0.27-6.43(averaging 3.27), 2.25-7.76 (averaging 3.46) and 0.04-0.18(averaging 0.11), respectively. From the results of geochemical analyses of sediments from the sea off eastern Korea represented the different types of sediment pattern are considered between the southern part and the northern part of the sea. The bottom sediments of the southern part were characterized with higher Sr and lower Zn, Br contents; higher Zr and lower Br contents; lower Br and lower Zn, Ti and Fe contents; and lower Zn and lower Ti and Fe contents.

  • PDF

Relative Photonic Properties of Fe/TiO2-Nanocarbon Catalysts for Degradation of MB Solution under Visible Light

  • Oh, Won-Chun;Zhang, Feng-Jun;Meng, Ze-Da;Zhang, Kan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1128-1134
    • /
    • 2010
  • Nanocarbon supported Fe/$TiO_2$ composite catalysts were prepared using CNTs (carbon nanotubes) and $C_{60}$ (fullerene) as nanocarbon sources by a modified sol-gel method. The Fe/$TiO_2$-nanocarbon composites were characterized by the BET surface area, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and UV-vis spectra. In comparison with non-nanocarbon doped Fe/$TiO_2$ composites, the nanocarbon supported Fe/$TiO_2$ composites had higher absorption ability with a larger specific surface area, and showed higher photocatalytic activity during the degradation of methylene blue (MB) under visible light. The reasons for the obvious increase of photocatalytic activity indicated that the photoactivity not only benefits from nanocarbon introduced, but also relates to the cooperative effect of the Fe as a dopant.

Formation and Color of the Spinel Solid Solution in NiO-ZnO-$Fe_2O_3$-$TiO_2$-$SnO_2$ System (NiO-ZnO-$Fe_2O_3$-$TiO_2$-$SnO_2$ 계 Spinel 고용체의 생성과 발색에 관한 연구)

  • 이응상;이진성
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.305-314
    • /
    • 1991
  • This study was conducted to research the formation and the color development of NiO-ZnO-Fe2O3-TiO2-SnO2 system for the purpose of synthesizing the spinel pigments which are stable at high temperature. After preparing ZnO-Fe2O3 as a basic composition, {{{{ chi }}NiO.(l-{{{{ chi }})ZnO.Fe2O3 system, {{{{ chi }}NiO.(l-{{{{ chi }})ZnO.TiO2 system, and {{{{ chi }}NiO.(l-{{{{ chi }})ZnO.SnO2 system were prepared with {{{{ chi }}=0, 0.2, 0.5, 0.7, 1 mole ratio respectively. The manufacturing was carried out at 128$0^{\circ}C$ for 30 minutes. The reflectance measurement and the X-ray analysis of these specimens were carried out and the results were summarized as follows. 1. In the specimens which included NiO, it was difficult for the spinel structure to be formed. 2. As increasing the contents of NiO and Fe2O3, all the groups which were yellow or green colored changed to brown. 3. NiO-ZnO-Fe2O3 system and NiO-ZnO-TiO2 system formed the spinel structure and the illmenite structure appeared in NiO-TiO2 system.

  • PDF

Photodecomposition of Different Organic Dyes Using Fe-CNT/TiO2 Composites under UV and Visible Light

  • Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • The Fe-treated CNT/$TiO_2$ photocatalysts mixed with anatase and rutile phase have been developed for the decomposition of non-biodegradable different organic dyes like methylene blue (MB), rhodamine B (Rh.B), and methyl orange (MO) in two conditions as ultraviolet and visible light respectively. The results indicate that all the Fe-CNT/$TiO_2$ composites proved to be more efficient photocatalysts since degradation of MB at higher reaction rates, tthe decomposition rate of different dyes increases with an increase of $Fe^{3+}$ concentration in composites the highest rate of decomposition of different dyes was noted under UV irradiation. These results can indicate that the large CNT network is facilitate the electron transfer and strongly adsorb dye molecules on the texted photocatalysts, iron is reactive in the photo-Fenton process resulting in high production of OH radicals and also high activity of the photocatalyst. And Fe particles can generate more photoinduced electrons to conduction band of $TiO_2$ under visible light irradiation. The composites of Fe-CNT/$TiO_2$ photocatalysts synthesized by a sol-gel method were characterized by BET, TEM, SEM, XRD and EDX.

Crystal Structure and Microstructure Variation of Nonstoichiometric Bi1±xFeO3±δ and Ti-doped BiFeO3 Ceramics under Various Sintering Conditions (비화학양론적 Bi1±xFeO3±δ와 Ti가 첨가된 BiFeO3의 소결조건에 따른 결정구조와 미세구조 변화)

  • Bae, Jihee;Kim, Jun Chan;Kim, Myong-Ho;Lee, Soonil
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.61-67
    • /
    • 2020
  • BiFeO3 with perovskite structure is a well-known material that has both ferroelectric and antiferromagnetic properties called multiferroics. However, leaky electrical properties and difficulty of controlling stoichiometry due to Bi volatility and difficulty of obtaining high relative density due to high dependency on the ceramic process are issues for BiFeO3 applications. In this work we investigated the sintering behavior of samples with different stoichiometries and sintering conditions. To understand the optimum sintering conditions, nonstoichiometric Bi1±xFeO3±δ ceramics and Ti-doped Bi1.03Fe1-4x/3TixO3 ceramics were synthesized by a conventional solid-state route. Dense single phase BiFeO3 ceramics were successfully fabricated using a two-step sintering and quenching process. The effects of Bi volatility on microstructure were determined by Bi-excess and Ti doping. Bi-excess increased grain size, and Ti doping increased sintering temperature and decreased grain size. It should be noted that Ti-doping suppressed Bi volatility and stabilized the BiFeO3 phase.

Ti-Getter Effects on Magnetic Properties of Ti0.96Co0.02Fe0.02O2 (Ti-Getter가 Ti0.96Co0.02Fe0.02O2의 자기적 특성에 미치는 영향)

  • Nam, H.D.;Kim, S.J.;Baek, J.K.;Lee, S.R.;Park, Cheol-Su;Kim, E.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2008
  • The samples were synthesized by using a solid state reaction. The X-ray diffraction pattern for $Ti_{0.96}Co_{0.02}Fe_{0.02}O_2$ showed a pure rutile phase with tetragonal structure, Mixtures of the proper proportions of the elements sealed in evacuated quartz ampoule were heated at $870{\sim}930^{\circ}C$ for one day and then slowly cooled down to room temperature at a rate of $10^{\circ}C$/h. In order to obtain single phase material, it was necessary to grind the sample after the first firing and to press the powders into pellets before annealing them for a second time in evacuated and sealed quartz ampoule. Magnetic properties have been investigated using the vibrating sample magnetometer (VSM). Room temperature magnetic hysteresis (M-H) curve showed an obvious ferromagnetic behavior and the magnetic moment per Fe atom under the applied of 0.8 T was estimated to be about $1.5\;{\mu}_B$/CoFe. But the magnetic moment per Fe atom under the applied of 0.8 T was estimated to be about $0.02\;{\mu}_B$/CoFe without Ti-getter. Size of particles is about $1\;{\mu}m$ using the transmission electron microscope (TEM). The ingredients of sample are distributed irregular in particles. Only Fe get shown on the surface of particles.

Magnetic Hardening of Rapidly Solidified $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ Compounds (급속냉각된 $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ 화합물에서 생성된 신 강자성상)

  • Choong-Jin Yang;E. B. Park;S. D. Choi
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.226-232
    • /
    • 1994
  • Rapidly solidified $SmFe_{7+x}M_{x}(M=Mo,\;V,\;Ti)$ compound were found to crystallize in the ${Sm(Fe,\;M)}_{7}$ based stable magnetic phase by introducing a second transition element into the Sm-Fe binary system. The ${Sm(Fe,\;M)}_{7}$ phase exhibits the highest Curie temperatuer ($T_{c}=355^{\circ}C$) ever Known in the Sm-Fe magnetic systems with a quite high intrinsic coercivity($_{i}H_{c}=3~6\;kOe $). The ${Sm(Fe,\;M)}_{7}$ phase remains stable even after annealing if once form during the rapid solidification. The primary reason for the high coercive force is due to the fine grain size($2000~8000\;{\AA}$)of the magnetic ${Sm(Fe,\;M)}_{7}$ matrix phase, and the enhanced Curie temperature is attributed to the extended solid-solubility of the additive transition elements in Fe matrix, which leads to volume expansion of the ${Sm(Fe,\;M)}_{7}$ cell causing an enhanced coupling constant of Fe atoms.

  • PDF

[ $M\ddot{o}ssbauer$ ] Spectroscopy and Crystal Chemistry of Aenigmatite, $Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$ (에이니그마타이트($Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$)의 뫼스바우어 분광분석과 결정화학)

  • Choi, Jin-Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.367-376
    • /
    • 2007
  • Aenigmatite, $Na_4(Fe^{2+},Ti,Fe^{3+}){_{12}}(Fe^{3+},Si){_{12}}O_{40}$, is a common constituent of sodium-rich alkaline igneous rocks and is classified a an open-branched single-chain silicate. $M\ddot{o}ssbauer$ spectroscopy of three natural aenigmatite specimens were done and the detailed crystal chemistry was obtained. Fitting of $M\ddot{o}ssbauer$ spectra led to the resolution of nine peaks. They consist of three doublets of $Fe^{2+}/oct$ and one merged peak at low velocity matching to two small peaks at high velocity which were assigned to $Fe^{3+}/tet\;and\;Fe^{2+}/oct$, respectively. Using the peak area for $Fe^{2+}\;and\;Fe^{3+}$ peaks, analytical data were recalculated. Precise assignment of $Fe^{2+}\;and\;Fe^{3+}$ ions in tetrahderal and octahedral sites revealed detailed crystal chemistry of aenigmatite. The existence of significant amounts of $Fe^{3+}/tet$ indicates that $Fe^{3+}$ has preference over $Al^{3+}$ for the tetrahedral sites. Crystal chemistry of aenigmatite (AEN1) yields the formula of $(Na_{3.97}Ca_{0.03})(Ca_{0.11}Mn_{0.59}Fe^{2+}{_{8.07}}Ti_{2.07}Mg_{0.70}Fe^{3+}{_{0.43}}Al_{0.04})(Fe^{3+}{_{0.56}}Al_{0.18}Si_{11.26})O_{40}$.