• Title/Summary/Keyword: FeSi2

Search Result 1,707, Processing Time 0.026 seconds

High Temperature Oxidation of Ti-6Al-4V, Ti-4Fe, Ti-(1,2)Si Alloys (Ti-6Al-4V, Ti-4Fe, Ti-(1,2)Si합금의 고온산화)

  • 박기범;이동복
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.135-141
    • /
    • 2001
  • Arc-melted Ti-6Al-4V, Ti-4Fe and Ti-(1,2) Si alloys were oxidized at 700, 800, 900 and $1000^{\circ}C$ in air. The oxidation resistance of Ti-4Fe was comparable to that of Ti-6Al-4V, while the oxidation resistance of Ti-(1,2) Si was superior to that of Ti-6Al-4V. Ti-2Si displayed the best oxidation resistance among the four alloys, but failed after oxidation at $1000^{\circ}C$ for 17h. The oxide scale formed on Ti-6Al-4V, Ti-4Fe and Ti-(1,2)Si consisted of ($TiO_2$ and a small amount of $Al_2$$O_3$), ($TiO_2$ and a small amount of dissolved iron), and ($TiO_2$ plus a small concentration of amorphous $SiO_2$), respectively. The oxide grains of the surface scale of the four alloys were generally fine and round.

  • PDF

Phase transformation and magnetic properties of NiFe thin films on Si(100) wafer and SiO2/Si(100) substrate by co-sputtering (Si(100) wafer와 SiO2/Si(100) 기판에 동시 스퍼터링법으로 증착된 NiFe 합금 박막의 상변화 및 자기적 특성)

  • Kang, Dae-Sik;Song, Jong-Han;Nam, Joong-Hee;Cho, Jeong-Ho;Chun, Myoung-Pyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.216-220
    • /
    • 2010
  • Ni-Fe alloys have various applications such as thin film inductor, thin film transformer, magnetic head's shield case, etc. Magnetic properties of Ni-Fe thin films depend on the process parameters such as thickness, contents, deposition rate, substrates, etc. In this study, NiFe films with a thickness of about 150nm were deposited on Si(100) wafer and $SiO_2$/Si(100) substrate at room temperature by a DC magnetron co-sputtering using Fe and Ni targets. Their phase formation and magnetic properties as a function of annealing temperature were investigated with XRD, FE-SEM and VSM. The assputtered films have BCC structure. With increasing annealing temperature, NiFe thin film for $SiO_2$/Si(100) substrate transformed completely from BCC to FCC phase above $500^{\circ}C$, but some BCC phase remained above $500^{\circ}C$ on Si(100) wafer. For samples annealed at $450^{\circ}C$, squareness ratio of NiFe thin film shows peak value and its saturation magnetization is around 0.0118 emu, which means that the optimum annealing temperature of NiFe thin film seems to be $450^{\circ}C$. The saturation magnetization of films decreased rapidly above the annealing temperature of $500^{\circ}C$ due to phase transformation from BCC to FCC phase.

Magnetic properties and crystal structures of $Sm_yGd_{2-y}Fe_{17-x}Si_x$ alloys prepared by induction melting

  • Nam Joong-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.8-11
    • /
    • 2006
  • The magnetic properties and crystal structures of $Sm_yGd_{2-y}Fe_{17-x}Si_x$ alloys ($0\leq\;x\leq2\;and\;y=0\~1.67$) have been investigated using x-ray diffraction and magnetic measurements. The $Sm_yGd_{2-y}Fe_{17-x}Si_x$ specimens were crystallized to the rhombohedral $Th_2Zn_{17}-structure$ with less than $5mol\%$ of impurities. The unit cells of the mixed rare-earth samples are smaller than those of $Sm_2Fe_{17}\;and\;Gd_2Fe_{17}.$ For example, the $T_c\;of\;SmGdFe_{17}\;(255^{\circ}C)$ is approximately 160 and $800^{\circ}C)$ higher than that of $Sm_2Fe_{17}\;and\;Gd_2Fe_{17},$ respectively. The $T_cs$ measured for $Sm_yGd_{2-y}Fe_{17-x}Si_x$ samples, 280 to $290^{\circ}C)$, are among the highest values observed for a $R_2Fe_{17-x}M_x$ intermetallic where M is a substituent other than cobalt.

A Refining of Natural Diatomite and Synthesis of SiC Powder (규조토 정제 및 탄화규소 분말합성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.312-319
    • /
    • 2017
  • For high value-added applications of natural blue diatomite, the physical refining process and synthesis of SiC from refined diatomite were investigated. Approximately 30 percent Fe ($Fe_2O_3$) in raw blue diatomite was removed by a particle sieve separation process; the Fe composition for 325 mesh down powder was approximately 2 percent. Although a wet and/or dry magnetic separation process had some influence on the separation and/or refining of Fe composition, the Fe composition in the non-magnetic by-product was approximately 2 percent. Water leaching separation was effective in removing the Fe composition; approximately 40 percent of the Fe in raw blue diatomite was removed. The synthesis of ${\beta}$-SiC by a carbothermal reduction of the $SiO_2$ in the refined diatomite using carbon (graphite, carbon black), the effects of an acid-treatment on removing the Fe, and the specific surface area for the synthesized powder were also investigated. The impurities were mostly eliminated and the specific surface area was increased to $52.5m^2/g$.

Mechanical alloy and Thermoelectric Properties of $\beta-FeSi_2$ by Planetary Ball Milling (기계적 합금법에 의한 $\beta-FeSi_2$분말 합성 및 열전특성)

  • Park Keunil;Cho Sung Il
    • Korean Journal of Crystallography
    • /
    • v.15 no.2
    • /
    • pp.104-109
    • /
    • 2004
  • The mechanical synthesis of thermoelectric material $FeSi_2$ by planetary ball mill has been investigated. The homogeneous and amorphous mixture of Fe-Si has been obtained by mechanical alloying for 850 rpm-40 min. The $\beta-FeSi_2$ powder could be synthesized by 1123 K-3 hr annealing heat treatment after mechanical alloying for 850 rpm-10, 20, and 40 min. The ceramic samples doped with the maximum content up to $10\;at.\;\%$ Co have exhibited semiconduction phenomena and maximum thermoelectric powder at 440K.

Thermoelectric Property of Fe-Si Based Materials Prepared By Self-Propagating High Temperature Synthesis (비기체연소합성법으로 제조한 Fe-Si계 재료의 열전특성)

  • Song, Tae-Ho;Lee, Hyeong-Min;Lee, Hong-Rim;Bae, Cheol-Hun
    • Korean Journal of Materials Research
    • /
    • v.7 no.4
    • /
    • pp.295-302
    • /
    • 1997
  • 금속분말 Fe와 Si에 KNO$_{3}$(Fe+Si)무게비=0.2로 점화촉매 KNO$_{3}$를 혼합하고 50MPa로 성형한 후 점화시키는 비기체연소합성(SHS; Self propagating High temperature Synthesis)법으로 출발 분말을 얻었다. 점화분위기를 공기 및 Ar으로 한 경우 XRD결과에서 특별한 차이가 없었고 두 경우 모두 SiO$_{2}$피크가 검출되었다. 합성된 분말을 성형한 후 119$0^{\circ}C$환원분위기에서 소결하고 포석온도이하에서 열처리하여 반도성 FeSi$_{2}$가 주상인 Fe-Si계 열전재료를 제조하였다. Fe/Si무게비=46/54,44/56 및 42/58시편의 제벡계수는 Si함량이 증가할수록 증가하였다. 점화후의 세척처리를 2단계로 하는 경우 제벡계수의 부호가 변화하여 p-type에서 n-type으로 변화하며 소결밀도가 크게 상승하였다. 조성에 관계없이 공통적으로 발견되는 SiO$_{2}$는 점화시의 분위기보다는 점화촉매에 포함된 K성분이 소결 및 열처리시 산화제로 작용하여 형성되는 것이 확인되었다.

  • PDF

Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme

  • Kim, Seong-Hwan;Huh, Joo-Youl;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure ($P_{O_2}$) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at $700^{\circ}C$ under atmospheres with various $P_{O_2}$ values. Irrespective of $P_{O_2}$, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a $Fe_2O_3/Fe_3O_4$ bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as $(Fe,Mn)_2O_3$. The multilayered structure of $(Fe,Mn)_2O_3/Fe_2O_3/Fe_3O_4$/amorphous Si-Mn-O remained even after extended oxidizing at $700^{\circ}C$ for 60 s. $Fe_2O_3$ was the dominantly growing oxide phase in the scale. The enhanced growth rate of $Fe_2O_3$ with increasing $P_{O_2}$ resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.

Crystallization and Embrittlement of $Fe_{78}B_{13}Si_{9}$ Amorphous Alloy ($Fe_{78}B_{13}Si_{9}$ 비정질 합금의 결정화 거동과 취성 현상)

  • Son, In-Jin
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.145-150
    • /
    • 1991
  • Crystallization and embrittlement of $Fe_{78}B_{13}Si_{9}$ amorphous alloy was investigated by differential scanning calorimetry, X-ray diffraction and transmission electron microscopy. The crystallization comprizes two exothermic processes. In the first crystallization stage, $\alpha$-(Fe, Si) dendrites are formed from the amorphous state, and in the second crystallization, $Fe_2B$ compounds are formed. An abrupt decrease of the fracture strain of the ribbon started from amorphous started annealed at about $340^{\circ}C$

  • PDF

Effect of Si on Corrosion of Fe-Cr and Fe-Cr-Ni Alloys in wet CO2 Gas

  • Nguyen, T.D.;Zhang, J.;Young, D.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.127-131
    • /
    • 2015
  • Model alloys Fe-9Cr, Fe-20Cr and Fe-20Cr-20Ni (wt. %) with 0.1 and 0.2 % Si were exposed to $Ar-20CO_2-20H_2O$ gas at $818^{\circ}C$. The undoped alloys formed a thick iron-rich oxide scale. The additions of Si reduced scaling rates of Fe-9Cr to some extent but significantly suppressed the formation of iron oxide scales on Fe-20Cr and Fe-20Cr-20Ni. Carburisation also occurred in all undoped alloys, but not in Si-containing Fe-20Cr and Fe-20Cr-20Ni. Protection against carburisation was a result of the formation of an inner scale layer of silica.

Phase Transformation and Microstructure of FeSi2 Thermoelectric Compounds Manufactured by Powder Metallurgy (분말야금법으로 제조된 FeSi2 열전특성 화합물의 열처리 시간에 따른 미세조직과 상변화)

  • Park, Kyoung-Tae;Shin, Jin-Gyo;Hong, Soon-Jik;Chun, Byong-Sun
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.482-488
    • /
    • 2010
  • In this study, $FeSi_2$ as high temperature performance capable thermoelectric materials was manufactured by powder metallurgy.The as-casted Fe-Si alloy was annealed for homogenization below $1200^{\circ}C$ for 3 h. Due to its high brittleness, the cast alloy transformed to fine powders by ball-milling, followed by subsequent compaction (hydraulic pressure; 2 GPa) and sintering ($1200^{\circ}C$, 12 h). In order to precipitate ${\beta}-FeSi_2$, heat treatment was performed at $850^{\circ}C$ with varying dwell time (7, 15 and 55 h). As a result of this experiment thermoelectric phase ${\beta}-FeSi_2$ was quickly transformed by powder metallurgical process. There was not much change in powder factor between 7h and 55h specimens.