• Title/Summary/Keyword: FeSi2

Search Result 1,724, Processing Time 0.035 seconds

Switching Characteristics of Magnetic Tunnel Junction with Amorphous CoFeSiB Free Layer (비정질 CoFeSiB 자유층을 갖는 자기터널접합의 스위칭 특성)

  • Hwang, J.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.276-278
    • /
    • 2006
  • The switching characteristics of magnetic tunnel junctions (MTJs) comprising amorphous ferromagnetic CoFeSiB free layer have been investigated. CoFeSiB was used for the free layer to enhance the switching characteristics. The typical junction structure was $Si/SiO_{2}/Ta$ 45/Ru 9.5/IrMn 10/CoFe $7/AlO_{x}/CoFeSiB\;(t)/Ru\;60\;(in\;nm)$. CoFeSiB has low saturation magnetization ($M_{s}$) of $560\;emu/cm^{3}$ and high anisotropy constant ($K_{u}$) of $2800\;erg/cm^{3}$. These properties caused low coercivity ($H_{c}$) and high sensitivity in MTJs, and it also confirmed in submicrometer-sized elements by micromagnetic simulation based on the Landau-Lisfschitz-Gilbert equation. By increasing CoFeSiB free layer thickness, the switching characteristics became worse due to increase of the demagnetization field.

Co-deposition of Si Particles During Electrodeposition of Fe in Sulfate Solution (황산철 도금액 중 Si 입자의 공석 특성)

  • Moon Sung-Mo;Lee Sang-Yeal;Lee Kyu-Hwan;Chang Do-Yon
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.6
    • /
    • pp.319-325
    • /
    • 2004
  • Fe thin films containing Si particles were prepared on metallic substrates by electrodeposition method in sulfate solutions and the content of codeposited Si particles in the films was investigated as a function of applied current density, the content of Si particels in the solution, solution pH, solution temperature and concentration of $FeSO_4$$7H_2$O in the solution. The amount of Si codeposited in the film was not dependent on the applied current density, solution pH and solution temperature, while it was dependent on the content of Si particles in the solution and the concentration of $FeSO_4$$7H_2$O in the solution. The amount of Si codeposited in the film increased with increasing content of Si particles in the solution but reached a maximum value of about 6 wt% when the content of Si particles in the solution exceeds 100 g/l. On the other hand, the content of Si codeposited in the film increased up to about 17 wt% with decreasing concentration of $FeSO_4$$7H_2$O in the solution. These results would be applied to the fabrication of very thin Fe-6.5 wt% Si sheets for electrical applications.

Theoretical Investigation of the Metallic Spacer-Layer Formation of Fe/Si Multilayered Films

  • Rhee, J.Y.;Kudryavtsev, Y.V.;Kim, K.W.;Lee, Y.P.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.76-78
    • /
    • 2002
  • We have carried out the first-principle electronic structure calculations to investigate the spacer layer formation of Fe/Si multilayered films (MLF) and compared with the results obtained by optical spectroscopy. The computer-simulated spectra based on various structural models of MLF showed that neither FeSi$_2$ nor B2O-phase FeSi, which are semiconducting, could be considered as the spacer layers in the Fe/Si MLF for the strong antiferromagnetic coupling. The optical properties of the spacer extracted from the effective optical response of the MLF strongly support its metallic nature. The optical conductivity spectra of various phases of Fe-Si compounds were calculated and compared with the extracted optical properties of the spacer. From the above theoretical investigations it is concluded that a E2-phase metallic FeSi compound is spontaneously formed at the interfaces during deposition.

  • PDF

Crystallization Behavior and Electrochemical Properties of Si50Al30Fe20 Amorphous Alloys as Anode for Lithium Secondary Batteries Prepared by Rapidly Solidification Process (액체급랭응고법으로 제조된 리튬 이차전지 음극활물질용 Si50Al30Fe20 비정질 합금의 결정화 거동 및 전기화학적 특성)

  • Seo, Deok-Ho;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.341-348
    • /
    • 2019
  • This paper reports the microstructure and electrochemical properties of Si-Al-Fe ternary amorphous alloys prepared by rapid solidification as an anode for lithium secondary batteries. The microstructure was analyzed using XRD and HR-TEM with EDS mapping. In accordance with DSC analysis, annealing was performed to crystallize the active nano-Si in the amorphous alloy. Thus, nano-Si forms (~80 nm) embedded in the matrix alloy, such as $Fe_2Al_3Si_3$, $FeSi_2$, and $Fe_{0.42}Si_{2.67}$, were successfully synthesized. The electrode based on the Si-Al-Fe ternary alloy delivered an initial discharge capacity of approximately $700mAh^{g-1}$, and exhibited a high Coulombic efficiency of 99.0~99.6% from the $2^{nd}$ to $70^{th}$ cycles.

Color Evolution and Phase Transformation of α-FeOOH@SiO2 and β-FeOOH@SiO2 pigments (SiO2가 코팅된 α-FeOOH와 β-FeOOH의 상전이를 통한 SiO2가 코팅된 α-Fe2O3의 색상 연구)

  • Yu, Ri;Choi, Kyoon;Pee, Jae-Hwan;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.210-214
    • /
    • 2013
  • This manuscript reports on compared color evolution about phase transformation of ${\alpha}-FeOOH@SiO_2$ and ${\beta}-FeOOH@SiO_2$ pigments. Prepared ${\alpha}$-FeOOH and ${\beta}$-FeOOH were coated with silica for enhancing thermal properties and coloration of both samples. To study phase and color of ${\alpha}$-FeOOH and ${\beta}$-FeOOH, we prepared nano sized iron oxide hydroxide pigments which were coated with $SiO_2$ using tetraethylorthosilicate and cetyltrimethyl-ammonium bromide as a surface modifier. The silica-coated both samples were calcined at high temperatures (300, 700 and $1000^{\circ}C$) and characterized by scanning electron microscopy, CIE $L^*a^*b^*$ color parameter measurements, transmission electron microscopy and UV-vis spectroscopy. The yellow ${\alpha}$-FeOOH and ${\beta}$-FeOOH was transformed to ${\alpha}-Fe_2O_3$ with red, brown at 300, $700^{\circ}C$, respectively.

Characteristics of Magnetic Tunnel Junctions Comprising Ferromagnetic Amorphous NiFeSiB Layers (강자성 비정질 NiFeSiB 자유층을 갖는 자기터널접합의 스위칭 특성)

  • Hwang, J.Y.;Rhee, S.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.6
    • /
    • pp.279-282
    • /
    • 2006
  • Magnetic tunnel junctions (MTJs), which consisted of amorphous ferromagnetic NiFeSiB free layers, were investigated. The NiFeSiB layers were used to substitute for the traditionally used CoFe and/or NiFe layers with the emphasis being given to obtaining an understanding of the effect of the amorphous free layer on the switching characteristics of the MTJs. $Ni_{16}Fe_{62}Si_{8}B_{14}$ has a lower saturation magnetization ($M_{s}:\;800\;emu/cm^{3}$) than $Co_{90}Fe_{10}$ and a higher anisotropy constant ($K_{u}:\;2700\;erg/cm^{3}$) than $Ni_{80}Fe_{20}$. The $Si/SiO_{2}/Ta$ 45/Ru 9.5/IrMn 10/CoFe $7/AlO_{x}/CoFeSiB\;(t)/Ru\;60\;(in\;nanometers)$structure was found to be beneficial for the switching characteristics of the MTJ, leading to a reduction in the coercivity ($H_{c}$) and an increase in the sensitivity resulted from its lower saturation magnetization and higher uniaxial anisotropy. Furthermore, by inserting a very thin CoFe layer at the tunnel barrier/NiFeSiB interface, the TMR ratio and switching squareness were improved more with the increase of NiFeSiB layer thickness up to 11 nm.

Magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) Alloys: A First-principles Study (B2 구조 FeX(X = Al, Si, Ni, Ga, Ge, Sn) 합금의 자기변형에 대한 제일원리계산)

  • Lee, Sunchul;Odkhuu, Dorj;Kwon, Oryong;Hong, Soon Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.117-121
    • /
    • 2013
  • In this study we investigated magnetism and magnetostriction of B2-structured FeX (X = Al, Si, Ni, Ga, Ge, and Sn) using a first-principles method, in order to survey the possibility of developing a transition metal based magnetostriction material. The Full-potential Linearized Augmented Plane Wave method was employed for solving the Kohn-Sham equation within the generalized gradient approximation for exchange-correlation interaction between electrons. FeX alloys are stabilized in ferromagnetic states except for the FeSi and FeGe alloys. Magnetostrcition coefficients of FeX (X = Al, Ni, Ga, and Sn) were calculated to be -5, +6, -84, -522ppm, respectively. It is noteworthy that the magnetostriction coefficient (-522ppm) of FeSn is larger than that (+400ppm) of Gafenol.

Extrusion Behavior and Finite Element Analysis of Rapidly Solidified Al-Si-Fe Alloys (급속응고 Al-Si-Fe 합금의 압출거동 및 유한요소 해석)

  • 정기승
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.56-61
    • /
    • 1999
  • The plastic deformation behaviors for powder extrusion of rapidly soildified Al-Si-Fe alloys at high temperature were investigated. During extrusion of Al-Si-Fe alloys, primary Si and intermetallic compound in matrix are broken finely. Additionally, during extrusion metastable $\delta$ phase($Al_4SiFe_2$) intermetallic compound disappears and the equilibrium $\beta$ phase($Al_5FeSi_2$) is formed. In gereral, it was diffcult to establish optimum process variables for extrusion condition through experimentation, because this was costly and time-consuming. In this paper, in order to overcome these problems, we compared the experimental results to the finite element analysis for extrusion behaviors of rapidly solidified Al-Si-Fe alloys. This ingormation is expected to assist in improving rapidly solidified Al-Si alloys extrusion operations.

  • PDF

Transformation Behaviour of High Temperature Thermoelectric $FeSi_2$ (고온열전재료 $FeSi_2$의 변태거동)

  • Eun, Young-Hyo;Min, Byoung-Gue;Lee, Dong-Hi
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.90-98
    • /
    • 1995
  • In the Fe-Si system, a mixture of a($Fe_{2}Si_5$) - and ${\epsilon}$(FeSi)-composition powders was sintered and heat-treated subsequently at various temperatures and time to get thermoelectric ${\beta}$-phase($FeSi_2$) compacts. The different transformational sequences depending on the heat treating temperature were found through the investigation into phase transformation and microstructural development. That is, a rapid eutectoid decomposition of ${\alpha}{\to}{\beta}+Si$ occurred together with a accompanying slow reaction between the dispersed Si formed by above decomposition and the preexisted ${\epsilon}$ phase at temperatures below $830^{\circ}C$. The unreacted Si and the micropores formed due to the density change upon the transformation coarsened as heat treating time elapsed. At temperatures above $880^{\circ}C$, however, transformation was proceeded by a peritectoid reaction of ${\alpha}+{\epsilon}{\to}{\beta}$. It took at least 200min. to achieve 90% volume fracion of transformed ${\beta}$ phase, and the growth of micro-pores was also observed in this transformational sequence with prolonged heat treating time.

  • PDF

Lipofectamine-2000 Assisted Magnetofection to Fibroblast Cells Using Polyethyleneimine-Fe3O4@SiO2 Nanoparticles

  • Jang, Eue-Soon;Park, Kyeong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2567-2573
    • /
    • 2012
  • We successfully synthesized $Fe_3O_4@SiO_2$ nanoparticles with ultrathin silica layer of $1.0{\pm}0.5$ nm that polyethyleneimine (PEI) with low molecular weight of 2.0-4.0 kDa was covalently conjugated with the resulting $Fe_3O_4@SiO_2$ nanoparticles by silane coupling reaction. The PEI-$Fe_3O_4@SiO_2$ nanoparticles were further used as gene delivery vector for a human fibroblast cell (IMR-90) line. Gene transfection efficiency of the PEI-$Fe_3O_4@SiO_2$ complexes did not increase remarkably after magnetofection; however, the addition of Lipofectamine 2000 significantly increased the transfection efficiency of the PEI-$Fe_3O_4@SiO_2$ complexes. We believe that the present approach could be utilized for magnetofection as alternative to $Fe_3O_4$ nanoparticles conjugated with the PEI of high molecular weight thanks to its relatively low cytotoxicity and high transfection efficiency.