• Title/Summary/Keyword: FeS layer

Search Result 383, Processing Time 0.031 seconds

Numerical Study of the Formability of Fiber Metal Laminates Based on Self-reinforced Polypropylene (자기 강화형 폴리프로필렌을 이용한 섬유 금속 적층판의 성형성에 관한 수치해석적 연구)

  • Lee, B.E.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.150-157
    • /
    • 2013
  • Fiber metal laminates (FMLs) are layered materials comprised of thin metal sheets and fiber reinforced plastic (FRP). This paper presents the numerical study of the formability enhancement of FMLs composed of an aluminum alloy and self-reinforced polypropylene (SRPP) composite. In this study, a numerical simulation based on finite element (FE) modeling is proposed to evaluate the formability of FMLs using ABAQUS/Explicit. The FE model, which included a single layer of solid and shell elements to model the blank, used discrete layers of the solid element with a contact model and shell elements with a friction based model for the aluminum alloy-composite interface conditions. This method allowed the description of each layer of FMLs and was able to simulate the interaction between the layers. It is noted through this research that the proposed numerical simulation described properly the formability enhancement of the FMLs and the simulation results showed good agreement with experimental results.

The formation of diamond films on high speed steel with a titanium inter- layer by electron-assisted CVD process (화학증착법에 의한 티타늄 피복된 고속도강에의 다이아몬드 박막 형성)

  • 정연진;이건영;이호진;최진일
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.6-11
    • /
    • 2004
  • The characteristics of interface layer and the effect of bias voltages on the nucleation density and heteroepitaxial growth of diamond films were studied in the hot filament CVD diamond process. Diamond films were deposited on a high speed steel (SKH-51) substrate by bias-assisted hot filament CVD technique with a titanium interlayer. The bias applied for enhancing the emission of electrons from the filament increased the nucleation density and achieving heteroepitaxial growth of CVD diamond. Diamond films obtained at a gas pressure of 20 torr; a bias voltage of 200 V and a substrate temperature of $700^{\circ}C$. Titanium was a suitable element as an interlayer for the diamond deposition on steel because it has high diffusivity of Fe and C as a carbide forming element.

Effect of Reheating on the Ion-nitrided Surface Microstructure of AI-Cr-Mo Steel (이온질화처리된 AI-Cr-Mo 강의 재가열 처리에 의한 표면조직변화)

  • Lee, J.I.;Shin, Y.S.;Kim, M.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1988
  • In this study the improvement of mechanical properties of ion-nitrided SACM-1 steel was investigated by analysing microstructural developments and hardness increase in the nitrided surface layer. Specimens were quenched at $570^{\circ}C$, which is lower than the eutectoid temperature ($590^{\circ}C$) of Fe-N binary system after nitrided at temperature of $460-570^{\circ}C$ for 2-8 hours under constant pressure of 8 torr. The depths of diffusion and compound layers were appeared to proportional to the root mean square time of nitriding. And the hardness showed the maximun value Hv = 1200 for the specimen nitrided at $530^{\circ}C$. Hardness distribution of the. ion-nitrided steels were increased by diffusion treatment below the eutectoid temperature of the Fe-N binary system. A prolonged heat treatment below the eutectoid temperature was attributed to the increase in the depth of diffusion layer at the expense of the decrease in surface hardness of the ion nitreded steel.

  • PDF

Effect of Fe2O3 Concentration in Coal Slag on the Formation of (Fe,Cr)3O4 in Chromia Refractory (크롬계 내화물에서 슬래그의 산화철 농도가 (Fe,Cr)3O4 형성에 미치는 영향)

  • Park, Woo Sung;Oh, Myongsook S.
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.495-500
    • /
    • 2007
  • The inside wall of a coal gasifier is lined with refractory, and the corrosion of the refractory is an important factor affecting the refractory lifetime and the replacement period. This paper examines the changes in microstructure of a chromia refractory due to chemical reactions with slag having varying amounts of $Fe_2O_3$. Slag samples were prepared by adding $Fe_2O_3$ to KIDECO slag, and static corrosion experiments were carried out at $1550^{\circ}C$. The layer of $(Fe,Cr)_3O_4$ formation and the depth of Fe depletion in the infiltrating slag were determined. In addition, FactSage equilibrium calculations were carried out in order to determine the conditions of formation, and to compare with the experimental observations. In the sample exposed to KIDECO slag, which has about 10 wt% $Fe_2O_3$, the formation of $(Fe,Cr)_3O_4$ was not observed. As the $Fe_2O_3$ concentration in slag increased, $(Fe,Cr)_3O_4$ formation and Fe depletion depth increased. Increasing $Fe_2O_3$ concentration also made the slag/refractory interface indistinguishable. Equilibrium calculations predicted that higher $Fe_2O_3$ concentrations favor chromite formation at gasification temperatures. The chromite formation was most favorable when the amount of $Cr_2O_3$ was limited, as in the case of dissolved $Cr_2O_3$ in slag. When the concentration of $Fe_2O_3$ in slag was less than 20%, the formation of chromite was least favorable in the system with equal amounts of slag and refractory.

Characterization of the Cu-layer deposition time on Cu2ZnSnS4 (CZTS) Thin Film Solar Cells Fabricated by Electro-deposition (Cu층 증착시간에 따른 Cu2ZnSnS4 (CZTS) 박막의 특성)

  • Kim, Yoon Jin;Kim, In Young;Gang, Myeng Gil;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.16-20
    • /
    • 2016
  • $Cu_2ZnSnS_4$ (CZTS) thin films were fabricated by successive electrodeposition of layers of precursor elements followed by sulfurization of an electrodeposited Cu-Zn-Sn precursor. In order to improve quality of the CZTS films, we tried to optimize the deposition condition of absorber layers. In particular, I have conducted optimization experiments by changing the Cu-layer deposition time. The CZTS absorber layers were synthesized by different Cu-layer conditions ranging from 10 to 16 minutes. The sulfurization of Cu/Sn/Zn stacked metallic precursor thin films has been conducted in a graphite box using rapid thermal annealing (RTA). The structural, morphological, compositional, and optical properties of CZTS thin films were investigated using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray Flourescenece Spectrometry (XRF). Especially, the CZTS TFSCs exhibits the best power conversion efficiency of 4.62% with $V_{oc}$ of 570 mV, $J_{sc}$ of $18.15mA/cm^2$ and FF of 45%. As the time of deposition of the Cu-layer to increasing, the properties were confirmed to be systematically changed. And we have been discussed in detail below.

Humidity Dependence of Tribological Behavior of DLC Films (DLC 필름의 마찰마모 특성의 습도 의존성에 대한 연구)

  • Park, Se-Jun;Lee, Kwang-Ryeol;Lee, Seung-Cheol;Ko, Dae-Hong
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.287-293
    • /
    • 2006
  • Diamond-like carbon (DLC) film was deposited using benzene $(C_6H_6)$ by r. f-plasma assisted chemical vapor deposition. The tribological properties of the DLC film were tested by rotating ball-on-disc type tribometer isolated by a chamber. The tribological test was performed in air environment of relative humidity ranging from 0 to 90% in order to observe the tribological behavior of the DLC film with the change of humidity. We used steel ball and DLC coated steel ball to investigate the effect of the counterface material. Using steel ball, the friction coefficient of DLC film increased from 0.025 to 0.2 as the humidity increased from 0% to 90%. In case of DLC coated steel ball which didn't form the Fe-rich debris, the friction coefficient showed much lower dependence of humidity as 0.08 in relative humidity 90%. We confirmed that the high humidity dependence of the friction coefficient using steel ball resulted from the increase of debris size with humidity and the formation of Fe-rich debris by the wear of steel ball. And the friction coefficient was immediately dropped when the relative humidity changed from 90% to 0% during test using steel ball. From this result, we confirmed that the effect of the Fe-rich debris on the friction coefficient was that Fe element in debris formed the highly sensitive graphitic transfer layer to humidity.

Studies on the formation of CrN surface layer by chromizing and plasma nitriding (Chromizing과 이온 질화에 의한 CrNvyaus층 형성에 관한연구)

  • Park, H. J.;Lee, S. Y.;Yang, S. C.;Lee, S. Y.;Kim, S. S.;Han, J. G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.334-344
    • /
    • 1998
  • Yew coating pmccss t.o form a surface layer ol CrN phasc on mild steel (A81 1020!, AlSI Hi3, 1Cr-0.5Mo steel (ASTM A213 and Nickrl-base superalloy (Inconel 718) was developed. Surlaces of various alloys t,n.ateii by chromizing for the formation ol Cr diffusion layer was subsequently trcaled by plasma nitriding in order t.o form the hard CrS coating layer on the surfaces. This duplex plasma surface tri-atments of chromizing and plasma nitriding have induced a lormation of a duplex-lrcated surfacr hyer of approximat~ls 70-80 $\mu\textrm{m}$thickncss with a iargcly improved microiiardnrss up to approxiniateW 1500Hv(50gf). The main cause for the lage improvment in the surface hardncss is altribilted to [.he fact that CrN and $Fe_xN$ phases are created successfully by ccliromizins and plasma nilriding treatment. High tenipera1,urc wear resislance of the duplex-treated mild steel and HI3 steels at $600^{\circ}C$ was examined. Comparing the duplex-treated specimens with the specimens treated only by chromizing, the rcsults shovmi that, thc wear volume of the duplex-treated mild skcl and 1113 stcel aSt.er a wear test, at $600^{\circ}C$ were reduced hy a Iactor of 8 and 3, respectively. Characteristics of the CrS phase by duplrx treatment were compared with $CrN_x$,/TEX> film by ion plating and the wear behaviors of CrN film lormed by two different nroccsses arc nea.riy identical.

  • PDF

A Study on Properties of $CuInS_{2}$ thin films by Cu/In ratio (Cu/In 비에 따른 $CuInS_{2}$ 박막의 특성에 관한 연구)

  • Yang, Hyeon-Hun;Kim, Young-Jun;Jeong, Woon-Jo;Park, Gye-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.326-329
    • /
    • 2007
  • $CuInS_{2}$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furnace annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_{2}$ thin films with non-stoichiometry composition. $CuInS_{2}$ thin film was well made at the heat treatment 200[$^{\circ}C$] of SLG/Cu/ln/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and Hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}$ [$cm^{-3}$], 312.502 [$cm^{2}/V{\cdot}s$] and $2.36{\times}10^{-2}$ [${\Omega}{\cdot}cm$], respectively.

  • PDF

One-dimensionally Ordered Array of Co and Fe Nanoclusters on Carburized-W(110) via Template Assisted Self-Assembly

  • Kim, Ji-Hyun;Yang, Serlun;Kim, Jae-Sung;Lukashev, Pavel;Rojas, Geoffrey;Enders, Axel;Sessi, Violetta;Honolka, Jan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.135-136
    • /
    • 2012
  • Carbon atoms near the surface of W(110) induce reconstructions such as $R(15{\times}12)$ -C/W(110) which consists of two characteristic parts, one square shaped and bright protrusion and two smaller ones. In the atomic resolution STM image, the bigger protrusion shows the periodicities of clean W(110), indicating that it is almost carbon poor region. The smaller protrusion contains hexagonal carbide surface layer of ${\alpha}$-W2C on W(110). Employing this carburized W(110) as templates, we grow Co and Fe clusters of less than ten atoms. Due to the selectivity of bonding sites, growth of larger cluster is highly unfavorable for Co and the size of clusters is very uniform. Since Co atoms prefer to sit on the bigger protrusion rather than smaller one, Co cluster can be arranged one-dimensionally in $R(15{\times}12)$-C/W(110) with quite uniform size distribution. However, Fe clusters sit on both sites without favored site, but still with uniform size distribution. On the other hand, Fe clusters can be grown with quasi one-dimensional order in $R(15{\times}3)$-C/W(110), which consists of only smaller protrusions. We investigate the magnetic properties of the ordered nano-sized clusters. Experiments using XMCD reveals little magnetic moment of Co cluster on $R(15{\times}12)$-C/W(110). This observation is consistent with the predictions of our first principles calculations that small Co clusters can be nonmagnetic or antiferromagnetic with low mean magnetic moment per atom.

  • PDF

Effects of Hydrogen on the PWSCC Initiation Behaviours of Alloy 182 Weld in PWR Environments

  • Kim, H.-S.;Hong, J.-D.;Lee, J.;Gokul, O.S.;Jang, C.
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.113-119
    • /
    • 2015
  • Alloy 82/182 weld metals had been extensively used in joining the components of the PWR primary system. Unfortunately, there have been a number of incidents of cracking caused by PWSCC in Alloy 82/182 welds during the operation of PWR worldwide. To mitigate PWSCC, optimization of water-chemistry conditions, especially dissolved hydrogen (DH) and Zn contents, is considered as the most promising and effective remedial method. In this study, the PWSCC behaviours of Alloy 182 weld were investigated in simulated PWR environments with various DH content. Both in-situ and ex-situ oxide characterizations as well as PWSCC initiation tests were performed. The results showed that PWSCC crack initiation time was shortest in PWR water (DH: 30cc/kg). Also, high stress reduced crack initiation time. Oxide layer showed multi-layered structures consisted of the outer needle-like Ni-rich oxide layer, Fe-rich crystalline oxide, and inner Cr-rich inner oxide layers, which was not altered by the level of applied stress. To analyse the multi-layer structure of oxides, EIS measurement were fitted into an equivalent circuit model. Further analyses including TEM and EDS are underway to verify appropriateness of the equivalent circuit model.