• Title/Summary/Keyword: FeOOH

Search Result 90, Processing Time 0.022 seconds

Studies on the Sensing Charcteristics of Carbon-monoxide Using the Maghemite (Maghemite를 이용한 일산화탄소 감지 특성에 관한 연구)

  • 박영구
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.4
    • /
    • pp.24-31
    • /
    • 1995
  • Gas sensing element, $\alpha-Fe_2O_3$ was synthesized by dehydration, reduction, and oxidation of $\alpha-FeOOH$, which was synthesized with $FeSO_4\cdot 7H_2O$ and NaOH. They were produced as a bulk-type, a thick film-type. Then, their responses and mechanisms of response to the gas of carbon monoxide were studied. The qualities of gas sefising elements are decided by the structure and the relative surface area. In the process of $\alpha-FeOOH$ synthesis, the effects of reaction conditions as the equivalent ratio, on the structure and the relative surface area of gas sensing element were observed. The changes of the structure were measured with XRD, SEM,TG-DTA and BET. The resistance changes of the synthesized gas sensor in the air were measured. The response ratio were also measured for the changes of working temperature and gas concentration. As a result of analysis with XRD, it was confirmed that the the best conditions for the synthesis of $\alpha-FeOOH$ were equivalent ratio 0.65. The thick film-type element of $\gamma-Fe_2O_3$ responded more quickly than the bulk-type did. The structure and the relative surface area of the $\rho-FeOOH$ were confirmed as the important factors deciding gas response charcteristics.

  • PDF

Effects of the Maghemite for Explosive accident Prevention to Liquefied Petroleum Gas (LPG 폭발사고 예방을 위한 Maghemite의 영향)

  • 박영구
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.2
    • /
    • pp.67-78
    • /
    • 1996
  • Gas sensing element, $\gamma-Fe_2O_3$was synthesized by dehydration, reduction, and oxidation of $$${\gamma}$-FeOOH, which was synthesized with $FeSO_4\;{\cdot}\;7H_2O$ and NaOH. They were produced as a bulk-type, a thick film-type. Then, their responses and mechanisms of response to the gas of liquefied-petroleum were studied. The qualities of gas sensing elements are decided by the structure and the relative surface area. In the process of $\alpha-FeOOH $synthesis, the effects of reaction conditions as the equivalent ratio, on the structure and the relative surface area of gas sensing element were observed. The changes of the structure were measured with XRD, SEM, TG-DTA and BET. The resistance changes of the synthesized gas sensor in the air were measured. The response ratio were also measured for the changes of working temperature and gas concentration. As a result of analysis with XRD, it was confirmed that the the best conditions for the synthesis of $\alpha -FeOOH$ were equivalent ratio 0.65. The thick film-type element of $\gamma-Fe_2O_3$responded more quickly than the bulk-type did. The structure and the relative surface area of the $\alpha-FeOOH $were confirmed as the important factors deciding gas response charcteristics.

  • PDF

Study of Color Evolution by Silica Coating and Etching based Morphological Control of α-FeOOH (실리카 코팅과 에칭에 의한 α-FeOOH의 색상변화 연구)

  • Lee, NaRi;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.379-383
    • /
    • 2018
  • Silica is used in shell materials to minimize oxidation and aggregation of nanoparticles. Particularly, porous silica has gained attention because of its performance in adsorption, catalysis, and medical applications. In this study, to investigate the effect of the density of the silica coating layer on the color of the pigment, we arbitrarily change the structure of a silica layer using an etchant. We use NaOH or $NH_4OH$ to etch the silica coating layer. First, we synthesize ${\alpha}-FeOOH$ for a length of 400 nm and coat it with TEOS to fabricate particles with a 50 nm coating layer. The coating thickness is then adjusted to 30-40 nm by etching the silica layer for 5 h. Four different shapes of ${\alpha}-FeOOH$ with different colors are measured using UV-vis light. From the color changes of the four different shapes of ${\alpha}-FeOOH$ features during coating or etching, the $L^*$ value is observed to increase and brighten the overall color, and the $b^*$ value increases to impart a clear yellow color to the pigment. The brightest yellow color was that coated with silica; if the sample is etched with NaOH or $NH_4OH$, the $b^*$ value can be controlled to study the yellow colors.

Studies on Preparation of Transparent Iron Oxide (투명산화철의 製造에 관한 硏究)

  • Baek, Moo-Hyun;Lim, Jong-Ho;Kim, Tae-Kyung;Lee, Seoung-Won
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.9-15
    • /
    • 2004
  • The optimum conditions were studied for the preparation of transparent iron oxide with the air oxidation of FeOOH. The FeOOH obtained by mixing NaOH and FeSO$_4$ solution in various conditions such as R(=2NaOH/FeSO$_4$), FeSO$_4$ concentration. reaction temperature and air flow rate. When the FeSO$_4$ increased gradually, the concentration of iron ion in the solution became high. So, particle size increased precipitating Fe$_3O_4$. Goethite dehydrate at about 200$^{\circ}C$ and ended the reaction at about 320$^{\circ}C$ forming hematite. The lower the reaction temperature was, the shorter the particle length of goethite and particle size decreased. When the flow rate of air as an oxidant increased, the amount of dissolved oxygen in the solution increased, which made oxidation rate increased. And then particle size of goethite decreased.

Atmospheric Corrosion Process for Weathering Steel

  • Nagano, Hiroo;Yamashita, Masato
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • Steel is generally not corrosion resistant to water with formation of non protective rusts on its surface. Rusts are composed of iron oxides such as $Fe_3O_4$, $\alpha-$, $\beta-$, $\gamma-$and ${\delta}-FeOOH$. However, steel, particularly weathering steel containing small amounts of Cu, Ni and Cr etc., shows good corrosion resistance against rural, industrial or marine environment. Its corrosion rate is exceedingly small as compared with that of carbon steel. According to the exposure test results undertaken in outdoor environments, the atmospheric corrosion rate for weathering steel is only 1 mm for a century. Atmospheric corrosion for steels proceeds under alternate dry and wet conditions. Dry condition is encountered on steel surface on fine or cloudy days, and wet condition is on rainy or snowy days. The reason why weathering steel shows superior atmospheric corrosion resistance is due to formation of corrosion protective rusts on its surface under very thin water layer. The protective rusts are usually composed of two layer rusts; the upper layer is ${\gamma}-FeOOH$ termed as lepidocrocite, and inner layer is nano-particle ${\alpha}-FeOOH$ termed as goethite. This paper is aimed at elucidating the atmospheric corrosion mechanism for steel in comparison with corrosion in bulky water environment by use of empirical data.The summary is as follows: 1. No corrosion protective rusts are formed on steel in bulky water. 2. Atmospheric corrosion for steel is the corrosion under wetting and drying conditions. Corrosion and passivation occur alternately on steel surface. Steel, particularly weathering steel with small amounts of alloying elements such as Cu, Ni and Cr etc. enhances forming corrosion protective rusts by passivation.

A study for corrosion products of Ancient iron objects (고대 철기유물의 부식 생성물에 관한 연구)

  • Kand, Dai-Ill;Takayasu. A.Koezuka;Tosiya Matsui
    • 보존과학연구
    • /
    • s.16
    • /
    • pp.59-111
    • /
    • 1995
  • Chemical composion and crystal form of Corrosion products found on archaeological iron objects were analyzed using X-ray fluorescence analysis, micro-X-ray powder diffraction analysis and ion chromatographic technique. The nature and behavior of the corrosion products were studied in order to aid in the conservation and restoration of burial iron objects. Twenty-two samples analyzed in this study were collected from iron object found in Korea and Japan. The corrosion products of iron objects from burial mounds contain $\alpha$-FeOOH, $\beta$-FeOOH, $\gamma$-FeOOH, $Fe_3O_4$and amorphous iron hydroxides. The content of $\alpha$-HeOOH is the greatest. Because, Ageing for long period should change the amorphous iron hydroxides is considerably less than that in usual atmospheric corrosion products. The concentration of chlorine and sulfine is remarkably variable ($Cl^-$ : 100- 30,000ppm, $SO_4^-2$ : 20-10,000ppm),but the reasons are unclear. The presence of generally high concentrations of chlorine and sulfine the corrosion products of iron objects seem to be influenced by the marine climatic condition. The presence of high chlorine and sulfine concentrations in the corrosion products of iron objects seem to be influenced by the marine burial environments.

  • PDF

Preparation of Magnetite Nanoparticles by Two Step Reaction (2단계 반응에 의한 마그네타이트 나노입자의 제조)

  • Shin, Dae-Kyu;Riu, Doh-Hyung
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • Nano magnetite particles have been prepared by two step reaction consisting of urea hydrolysis and ammonia addition at certain ranges of pH. Three different concentrations of aqueous solution of ferric ($Fe^{3+}$) and ferrous ($Fe^{2+}$) chloride (0.3 M-0.6 M, and 0.9 M) were mixed with 4 M urea solution and heated to induce the urea hydrolysis. Upon reaching at a certain pre-determined pH (around 4.7), 1 M ammonia solution were poured into the heated reaction vessels. In order to understand the relationship between the concentration of the starting solution and the final size of magnetite, in-situ pH measurements and quenching experiments were simultaneous conducted. The changes in the concentration of starting solution resulted in the difference of the threshold time for pH uprise, from I hour to 3 hours, during which the akaganeite (${\beta}$-FeOOH) particles nucleated and grew. Through the quenching experiment, it was confirmed that controlling the size of ${\beta}$-FeOOH and the attaining a proper driving force for the reaction of ${\beta}$-FeOOH and $Fe^{2+}$ ion to give $Fe_3O_4$ are important process variables for the synthesis of uniform magnetite nanoparticles.

In Situ Observation of Initial Rusting Process of Steel Containing Al Using Synchrotron Radiation X-Rays

  • Morimoto, J.;Yamashita, M.;Uchida, H.;Doi, T.;Kamimura, T.;Miyuki, H.;Konishi, H.;Mizuki, J.
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • We observed initial rusting process of steel containing Al under wet/dry cyclic condition with NaCl solution film using in situ X-ray diffraction spectroscopy at SPring-8 synchrotron radiation facility. It was found that mass fraction of iron oxides such as ${\alpha}-FeOOH$, ${\beta}-FeOOH$ and ${\gamma}-FeOOH$ varied with Al content. Some kinds of Al oxides were also found at the initial stage of corrosion. Those corrosion products might affect the corrosion process and corrosion rate of the steel.

Formation Reaction of Mn-Zn Ferrite by Wet Process (습식합성에 의한 Mn-Zn Ferrite의 생성반응에 관한 연구)

  • 이경희;이병하;허원도;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1993
  • Formation reaction of Mn-Zn ferrite depending on various synthetic conditions of wet process was investigated using FeCl2.nH2O(n≒4), MnCl2.4H2O, ZnCl2 as starting materials. A stable intermediate precipitate was formed by the addition of H2O2. And the precipitate was hard to transform to spinel phase of Mn-Zn Fe2O4. Single phase of Mn-Zn Fe2O4 spinel was obtained above 8$0^{\circ}C$ reaction temperature. The powder had spherical particle shape and 0.02~0.05${\mu}{\textrm}{m}$ particle size. Fe(OH)2 solid solution, -FeO(OH) solid solution, -FeOOH, Mn-Zn Fe2O4 spinel were formed with air flow rate 180$\ell$/hr. However, single phase of Mn-Zn Fe2O4 spinel with cubic particle shape and 0.1~0.2${\mu}{\textrm}{m}$ particle size was formed with synthetic conditions of 8$0^{\circ}C$ and 90 munutes. The particle shape of the -FeOOH was needle-like.

  • PDF