• Title/Summary/Keyword: FeO

Search Result 5,791, Processing Time 0.031 seconds

Formation of Iron Oxides in a Waste Pickling Liquor (염산 산세 폐액에서의 철산화물의 회수)

  • Lee, S. R.;Jeong, Y. Y.;Ahn, Y. M.;Yoon, J.;Hwang, Y. G.
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.44-50
    • /
    • 1992
  • The $\alpha$-FeOOH powders were prepared by allkaline and acidic method on the small scale plant from the waste pickling liquor of iron. $\alpha$-FeOOH, $\alpha-Fe_2O_3$, $Fe_3O_4$ and ${\gamma}-Fe_2O_3$ powders were examined by TEM, SEM, TG-DTA, X-ray diffraction, VSM and chemical analysis. The results obtained from the experiment could be summerized as follows : the reaction time for the preparation of $\alpha$-FeOOH was observed to be smaller in the case of alkaline method and the products was acicular with the size of about $0.5\mu\textrm{m}$. The color of $\alpha-FeOOH and $\alpha-Fe_2O_3$was lovely yellow and red, respectively. The magnetic properties of $Fe_3O_4$ obtained by the reduction of $\alpha-Fe_2O_3$in the $H_2$ atomosphere at $370^{\circ}C$ for 1 hour showed 367(Oe) and 82.7(emu/g).

  • PDF

The Utilization of the steel converter dust (철강전노 dust의 활용에 관한 연구)

  • 김미성;김민석;김성원;오재현
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.9-15
    • /
    • 1993
  • In this study, magnetite($Fe_3$$O_4$) from the converter dust of the Kwangyang steel making factory has been recove-red by means of the magnetic separation and the sedimentation column. The magnetite recovered from the dust is used for the preparation of Sr-ferrite instead of hematite. The results obtained in this study as follows : 1. The converter EP dust of the Kwangyang steel making factory are composed of $\alpha$-Fe, ($Fe_3$$O_4$) wustite etc. Magnetite in the converter EP dust is recovered by using sedimentation column and plastic bonding magnet. 2. It was confirmed that Sr-ferrite synthesis could be possible without oxidizing roasting of the magnetite. The steps of Sr-ferrite formation are proposed as follows : I$SrCO_3$ $+Fe_3$O$_4$+1/2(1-X)$O_2$longrightarrow$\alpha$ $-Fe _2$$O_3$ $+SrFeO _3$\ulcorner+$CO_2$II. $5.5\alpha$ $-Fe_2$$O_3$ $+SrFeO_3$\ulcornerlongrightarrowSrFe\ulcornerO\ulcorner+1/2(1/2-X)$O_2$3. By using magnetite from the dust insted of hematite, the hard Sr-ferrite magnet of (B.H)\ulcorner=2.64MGOe in the magnetic characteristics was succesfully prepared.

  • PDF

Effect of Fe2+/Fe3+ Molar Ratio on the Synthesized Magnetic Black Pigment by Hydrothermal Method (수열합성법으로 제조한 흑색 자성안료의 Fe2+/Fe3+ 몰비에 따른 특성)

  • Jung, Myung-Ho;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.812-816
    • /
    • 2017
  • $Fe_3O_4$ was prepared on the $TiO_2-coated$ natural mica substrate. The natural mica has an average particle size of $22{\mu}m$. The substrate was coated on $TiO_2$ thin films using hydrothermal synthesis at pH 1.5-2.5 at $75^{\circ}C$. The Fe precursor solution was prepared by mixing $FeSO_4$ (for $Fe^{2+}$ ion) and $FeCl_3$ (for $Fe^{3+}$ ions) with different molar ratios such as 1/2, 1/1, 2/1, 3/0, and $Fe_3O_4$ only. X-ray diffraction analysis shows that the crystal structure depends on the $FeCl_3-to-FeSO_4$ molar ratio. $Fe_3O_4$ crystal phase could be obtained at higher $FeSO_4$ contents.

Exchange and Interlayer Coupling in NiO Spin Valve Films (NiO 스핀밸브 박막에서 교환결합과 사잇층 결합에 관한 연구)

  • 박창만;고성호;황도근;이상석;이기암
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.258-264
    • /
    • 1997
  • Exchange and interlayer couplings between a NiFe ferromagnetic layer and an antiferromagnetic NiO layer in NiO/NiFe/Cu/NiFe spin-valve films prepared by rf/dc magnetron sputtering were investigated. The interlayer coupling field ($H_{int}$ decreased with the Cu layer thickness, and the exchange coupling field $(H_{ex}$ saturated to 90 Oe. the magnetitudes of $H_{ex}$ and $H_{int}$ decreased with increasing thickness of the pinned NiFe layer. The increase of $H_{int}$ with the free NiFe layer may be due to the increased magnetization.

  • PDF

Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method

  • Noh, Kwang Mo;Lee, Young Bae;Kwon, Woo Hyun;Kang, Jeoung Yun;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.308-314
    • /
    • 2016
  • Cobalt-, zinc-, and nickel-zinc-substituted nano-size manganese ferrite powders, $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, $Mn_{0.8}Zn_{0.2}Fe_2O_4$ and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$, were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently studied. The $MnFe_2O_4$ ferrite powder annealed at temperatures above 523 K exhibited a spinel structure, and the particle size increased as the annealing temperature increased. All ferrites annealed at 773 K showed a single spinel structure, and the lattice constants and particle size decreased with the substitution of Co, Zn, and Ni-Zn. The $M{\ddot{o}}ssbauer$ spectrum of the $MnFe_2O_4$ ferrite powder annealed at 523 K only showed a doublet due to its superparamagnetic phase, and the $M{\ddot{o}}ssbauer$ spectra of the $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, and $Mn_{0.8}Zn_{0.2}Fe_2O_4$ ferrite powders annealed at 773 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of the $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$ ferrite powder annealed at 773 K consisted of two Zeeman sextets and one quadrupole doublet due to its ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explained the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. Relative to pure $MnFe_2O_4$, the saturation magnetizations and coercivities were larger in $Mn_{0.8}Co_{0.2}Fe_2O_4$ and smaller in $Mn_{0.8}Zn_{0.2}Fe_2O_4$, and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$. These variations could be explained using the site distribution equations, particle sizes and magnetic moments of the substituted ions.

Low-Temperature Preparation of Ultrafine Fe2O3 Powder from Organometallic Precursors (유기금속 전구체로부터 초미립 $Fe_2O_3$ 분말의 저온 합성)

  • 김정수;김익범;강한철;홍양기
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.942-948
    • /
    • 1992
  • Ultrafine iron oxide powder, {{{{ gamma }}-Fe2O3 and $\alpha$-Fe2O3, were prepared by the thermal decomposition of organometallic compounds. The formation process of powder includes the thermal decomposition and oxidation of the organometallic precursors, Fe(N2H3COO)2(N2H4)2 (A) and N2H5Fe(N2H3COO)3.H2O (B). The organometallic precursors, A and B, were synthesized by the reaction of ferrous ion with hydrazinocarboxylic acid, and characterized by quantitative analysis and infrared spectroscopy. The mechanistic study for the thermal decomposition was performed by DAT-TG. The iron oxide powder was obtained by the heat treatment of the precursors at 20$0^{\circ}C$ and $600^{\circ}C$ for half an hour in air. The phases of the resulting product were proved {{{{ gamma }}-Fe2O3 and $\alpha$-Fe2O3 respectively. The particle shape was equiaxial and the particle size was less than 0.1 ${\mu}{\textrm}{m}$. Magnetic properties of the {{{{ gamma }}-Fe2O3 powder obtained from A and B was 234 Oe of coercivity, 64.26 emu/g of saturation magnetization, 23.59 emu/g of remanent magnetization and 24.1 Oe, 47.27 emu/g, 3.118 emu/g respectively. The value of $\alpha$-Fe2O3 powder was 1.494 Oe, 0.4862 emu/g, 0.1832 emu/g and 1,276 Oe, 0.4854 emu/g, 0.1856 emu/g respectively.

  • PDF

Degradation of Soft Magnetic Properties of Fe-Hf-N/Cr/SiO2 Thin Films Reacted with Bonding Glass (접합유리와 반응된 Fe-Hf-N/Cr/SiO2 박막의 연자기 특성 열화)

  • Je Hae-June;Kim Byung-Kook
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.780-785
    • /
    • 2004
  • The degradation mechanism of soft magnetic properties of $Fe-Hf-N/Cr/SiO_2$ thin films reacted with a bonding glass was investigated. When $Fe-Hf-N/Cr/SiO_2$ films were annealed under $600^{\circ}C$ without the bonding glass, the compositions and the soft magnetic properties of Fe-Hf-N layers were not changed. However, after reaction with the bonding glass at $550^{\circ}C$, the soft magnetic properties of the film were degraded. At $600^{\circ}C$, the saturation magnetization of the reacted film decreased to 13.5 kG, and its coercivity increased to 4 Oe, and its effective permeability decreased to 700. It was founded that O diffused from the glass into the Fe-Hf-N layers during the reaction and generated $HfO_2$ phases. It was considered that the soft magnetic properties of the $Fe-Hf-N/Cr/SiO_2$ films reacted with the bonding glass were primarily degraded by the formation of the Fe-Hf-O-N layer of which the Fe content was below 60 $at\%$, and secondarily degraded by the Fe-Hf-O-N layer above 70 $at\%$.

Mössbauer Studied of Multiferroic Bi2/3La1/3FeO3 Nanoparticles (Multiferroic Bi2/3La1/3FeO3 나노입자의 Mössbauer 연구)

  • Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2006
  • La substituted perovskite $BiFeO_3$ have been prepared by a sol-gel method. Magnetic and structural properties of the powders were characterized with Mossbauer spectroscopy, XRD, SEM, and TG-DTA. The crystal structure is found to be a rhombohedrally distorted perovskite structure with the lattice constant $\alpha=3.985{\AA}\;and\;\alpha=89.5^{\circ}.\;Bi_{2/3}La_{1/3}FeO_3$ powders that were annealed at and above $600^{\circ}C$ have a single-phase perovskite structure. However, powders annealed at $900^{\circ}C$ have a typical perovskite structure with small amount of $Bi_2O_3$ phase. The Neel temperature of $Bi_{2/3}La_{1/3}FeO_3$ is found to be $680\pm3K$. The isomer shift value at room temperature is found to be 0.27 mm/s relative to the Fe metal, which is consistent with high-spin $Fe^{3+}$ charge states. Debye temperature far$Bi_{2/3}La_{1/3}FeO_3$ is found to be $305\pm5K$. The average hyperfine field $H_{hf}(T)$ of the $Bi_{2/3}La_{1/3}FeO_3$, shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.42(T/T_N)^{3/2}-0.13(T/T_N)^{5/2}$ for $T/T_N<0.7$ indicative of spin-wave excitation.

Depletion Kinetics of Ground State FeO Molecules by $O_2, N_2O, and \;N_2$

  • Son, H. S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.583-587
    • /
    • 2000
  • Depletion kinetics of ground state FeO molecules by $0_2$, $N_2O$ and $N_2$ has been studied at room temperature. The ground state FeO molecules were generated by photolysis of a $Fe$(CO)_5$/M(O_2$, $N_2O)/He$ mixture using an unfocused weak UV laser beam. The formation of ground state FeO molecules was identified by a laser-induced fluorescence (LIF) method. The intensity distribution of those undisturbed rotational lines suggests that the rotational temperature of the ground state FeO molecules is lower than room temperature. The LIF intensities of FeO molecules at different partial pressures of $0_2$, $N_2O$ and $N_2$ were monitored as a function of the time delay between the photolysis and probe laser pulses to obtain the depletion rate constants for the ground state FeO. They were 1.7+ 0.2x $10^{-12}$, 4.8 $\pm0.4$ x $10^{-12}$, and $1.4\pm$ 0.2x $10^{-12}cm^3$molecule^{-1}s^{-1}$$ by $0_2$, $N_20$, and $N_2$, respectively.