• Title/Summary/Keyword: FeEDTA

Search Result 269, Processing Time 0.025 seconds

Photocatalytic Degradation of Oxytetracycline Using Co-precipitation Method Prepared Fe2O3/TiO2 Nanocomposite

  • Jia, Yuefa;Liu, Chunli;Li, Rong
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.46-50
    • /
    • 2016
  • $Fe_2O_3/TiO_2$ nanocomposite were successfully synthesized by co-precipitation method using $Fe(NO_3)_3{\cdot}9H_2O$ and $Ti(SO_4)_2$ as raw materials. Structural and textural features of the mixed oxide samples were characterized by X-ray diffractometer, field emission scanning electron microscopy and energy-dispersive X-ray. The effects of initial concentration of oxytetracycline (OTC), different competitive ions and organics on the photocatalytic degradation rate of OTC by the $Fe_2O_3/TiO_2$ nanocomposite were analyzed under UV and visible light irradiation. The results indicate that the optimized initial concentration of OTC was 50 mg/L to achieve the best photocatalytic efficiency. $Cu^{2+}$, $NH_4{^+}$, $C_3H_8O$ and EDTA in the aqueous suspension were found to suppress the degradation rate of OTC, whereas the effect of $NO_3{^-}$ and $H_2C_2O_4$ can be ignored.

Metal Protease from Streptomyces spp. - I. Isolation of the Strain and the Enzymatic Properties - (Streptomyces 속균(屬菌)이 생성하는 Metal Protease - 제 1 보 : 균(菌)의 분리(分離) 및 효소학적(酵素學的) 성질(成質) -)

  • Yi, Dong-Heui;Yu, Choon-Bal
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.13-17
    • /
    • 1980
  • A Streptomyces spp. strain SY 79-1 which was capable of producing metal protease was isolated from soil. The optimal pH and temperature of the protease were around pH 8.0 and $45^{\circ}C$, respectively. The stable pH range of the enzyme was between pH 6.0 to 8.0. The enzyme was stable at $45^{\circ}C$, but it lost the activity about 75 % for 5 min and completely for 30 min when it was treated at $60^{\circ}C$. The activity of the enzyme was inhibited by $Hg^{++},\;Cu^{++},\;Ag^{+}$ and activated by $Mg^{++},\;Mn^{++},\;Co^{++},\;but\;Fe^{++},\;Ca^{++},\;Pb^{++}\;and\;Al^{3+}$ did not affect enzyme activity. This enzyme was strongly inhibited by EDTA, but was not inhibited by 2, 4-DNP, ${\rho}$-CMB, ${\varepsilon}$-aminocaproic acid, cysteine, thiourea, citric acid, oxalic acid and sodium arsenate. When cobalt was added to the EDTA-denatured enzyme, the activity of the enzyme was restored.

  • PDF

Studies on the Characterization of Protease Produced by Streptomyces alboniger (Streptomyces alboniger가 생산(生産)하는 Protease의 특성(特性)에 관(關)한 연구(硏究))

  • Kim, Kang-Shin;Han, Kang-Wan;Kim, Hyung-Rho
    • Applied Biological Chemistry
    • /
    • v.27 no.3
    • /
    • pp.174-179
    • /
    • 1984
  • Some physico-chemical properties of proteolytic enzyme produced from Streptomyces alboniger Hesseltine were characterized. The optimal pH and temperature of the enzyme were around pH 9.0 and $40^{\circ}C$, respectively. The enzyme was stable between pH $6.0{\sim}10.8$ and the enzyme activity was not inactivated by heat treatment in lower temperature than $40^{\circ}C$. However the enzyme activity decreased by 70% of the initial activity for 10minutes at $70^{\circ}C$. The Km value was $7.1{\mu}M$ with Hammarsten casein and $333.3{\mu}M$ with cytochrom C. The activity of enzyme was inhibited by metal ions in the order of $Fe^{+++}>Hg^{++}>Cu^{++}>Pb^{++}>Zn^{++}$, whereas $Ca^{++}$ increased the enzyme activity. There was no effect of $Mg^{++}$ and $Co^{++}$ on the enzyme activity. The enzyme was inhibited by EDTA strongly. When $Ca^{++}$ was added to the EDTA-denaturated enzyme, the activity of enzyme was restored.

  • PDF

Studies on the Stabilities of Red Pepper Oleoresin (고추 oleoresin의 품질안정성(品質安定性))

  • Kim, Chie-Soon;Lee, Gyu-Hee;Bae, Jung-Seul;Oh, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.3
    • /
    • pp.85-90
    • /
    • 1987
  • This experiment was carried out to study the preparations of red pepper oleoresin, the effects of pH and heat treatment on the stabilities of capsanthin and capsaicin in oleoresin state, and the interacting effects of ascorbic acid, metal salts and EDTA on the stabilities of capsanthin in the oleoresin-linoleate aqueous model system. The results were as follows: 1. Acetone was the most effective solvent to extract capsanthin and capsaicin from red pepper powder. The yield of oleoresin extracted with acetone was 14.27%. 2. Capsaicin was more stable at high temperature than capsanthin in oleoresin state. Capsanthin and capsaicin in oleoresin state were comparatively stable in the range (ron) pH 3 to pH 8. 3. Ascorbic acid acted as a prooxidant on the capsanthin oxidation reaction at concentrations up to $10^{-3}M$, but acted as an antioxidant at $10^{-1}M$. 4. The addition of $Cu^{+2}M$ and $Fe^{+3}M$ ions at all concentration increased the prooxidant activity on the degradation of capsanthin in oleoresin state. 5. EDTA showed a strong antioxidation the stability of capsanthin in oleoresin state.

  • PDF

Purification and Characterization of Fibrinolytic Enzymes from Tricholoma saponaceum (할미송이버섯으로부터 혈전용해효소의 정제 및 특성 연구)

  • Kim, Jun-Ho
    • The Korean Journal of Mycology
    • /
    • v.28 no.1
    • /
    • pp.60-65
    • /
    • 2000
  • Two fibrinolytic enzymes were purified from the fruiting bodies of Tricholoma saponaceum. The enzymes have a molecular weight of 18(FE-1) and 18.2(FE-2) kDa, respectively, and include $Zn^{2+}$ ion as determined by ICP/MS. The N-terminal amino acid sequence of the two enzymes were exactly the same: A-L-Y-V-G-X-S-P-X-Q-Q-S-L-L-V. The activity of FE-1 was highly inhibited by EDTA and 1,10-phenanthroline, indicating that the enzyme is a metalloprotease. The activity of FE-1 was slightly increased by $Mg^{2+},\;Zn^{2+},\;Fe^{2+}\;and\; Co^{2+}$, however, the enzyme activity was totally inhibited by $Hg^{2+}$. Addition of $Zn^{2+}\;and\;Co^{2+}$ reversed the inhibition caused by 1,10-phenanthroline. It has a pH optimum at pH 7.5, suggested that FE-1 was a neutral protease. It shows the maximum fibrinolytic activity at $55^{\circ}C$, is completely inactivated above at $65^{\circ}C$.

  • PDF

The ascorbic acid oxidizing activity in streptomyces viridochromogenes (Streptomyces viridochromogenes의 ascorbic acid 산화 활성)

  • 김성욱;노재영;김재헌
    • Korean Journal of Microbiology
    • /
    • v.28 no.4
    • /
    • pp.283-289
    • /
    • 1990
  • The competence time of Streptomyces viridochromogenes for aerial mycelium formation was determined. Within 10 hrs after spore inoculation the submerged mycelium was programed to form aerial mycelium, when the former was laid on agar plate. The white aerial mycelium was formed 17-22 hrs after the transfer. Ascorbic acid oxidizing enzyme band on native gel showed chracteristic mobility change during aerial mycelium formation. Total activity of this enzyme did not show any correlation with the differentiation. The asay condition for the crude enzyme was determined. EDTA and $FeCl_{2}$ showed stimulatory effect. Approximate ratio of oxygen consumed to ascorbic acid oxidized was 1:1.

  • PDF

A Novel Iron(III) Selective Membrane Electrode Containing a Tripodal Polycatacholamine as Sensor

  • Bera, Rati Kanta;Sahoo, Suban K;Baral, Minati;Kanungo, B.K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3592-3596
    • /
    • 2011
  • A novel poly(vinylchloride)-based membrane sensor using $N^1$,$N^3$,$N^5$-tris(2-(2,3-dihydroxybenzylamino)-ethyl)cyclohexane-1,3,5-tricarboxamide (CYCOENCAT, L) as ionophore has been prepared and explored as $Fe^{3+}$ selective electrode. The membrane electrode composed of ionophore, poly(vinylchloride) and o-nitropheyloctyl ether in the optimum ratio 4:33:63 gave excellent potentiometric response characteristics, and displayed a linear log[$Fe^{3+}$] versus EMF response over a wide concentration range of $1.0{\times}10^{-5}-1.0{\times}10^{-1}$ M with super nernstian slope of 28.0 mV/decade and the detection limit of $8.0{\times}10^{-6}$ M. The proposed ion selective electrode showed fast response time (< 15 s), wide pH range (3.0-7.0), high non-aqueous tolerance (up to 20%) and adequate long life time (120 days). It also exhibited very good selectivity for $Fe^{3+}$ relative to a wide variety of alkali, alkaline earth, transition and heavy metal ions. Further, the analytical applicability of the sensor was tested as an indicator electrode in the potentiometric titration of $Fe^{3+}$ with EDTA.

The Treatment of LNAPL(BETXlMTBE) Contaminated Groundwater Applying Photo-assisted Fenton Reaction with Various Fe(III) Chelator (Photo-assisted Fenton 반응에 다양한 Fe(III) chelator를 적용한 LNAPL(BTEX/MTBE)오염 지하수 처리에 관한 연구)

  • Park, Jong-Hun;Do, Si-Hyun;Lee, Hong-Kyun;Jo, Young-Hoon;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.26-32
    • /
    • 2009
  • In this study, the degradation of BTEX (benzene, toluene, ethylbenzene, xylene) was tested in both (Fe$^{3+}$+chelating agent)/H$_2$O$_2$system [Fe(III) 1 mM, oxalate 6 mM, H$_2$O$_2$ 3%, and pH 6] and UV/(Fe3++ chelating agent)lHzOz system [UV dose 17.4 kWhlL, Fe(III) 1mM, oxalate 6 mM,H$_2$O$_2$ 1%, and pH 6]. The types of chelating agents used in experiments were catechol, NTA, gallic, acetyl acetone, succinic, acetate, EDTA, citrate, malonate, and oxalate and the optimum chelating agent for BTEX degradation was determined. The results showed that acetate was the optimum chelating agent for BTEX degradation in both (Fe$^{3+}$+chelating agent)/H$_2$O$_2$ and UV/(Fe$^{3+}$+chelating agent)/H$_2$O$_2$ system, and UV radiation enhanced the degradation of BTEX with any types of chelating agents. Moreover, UV/(Fe$^{3+}$+chelating agent)/H$_2$O$_2$ system, which chelating agent was acetate, removed effectively mixtures of BTEX and MTBE (methyl tert-butyl ether) when the concentration of both BTEX and MTBE was 200 mg/L, respectively. In this system, BTEX was degraded completely and 85% of MTBE was degraded at the reaction time of 180 min. Therefore, UV/((Fe$^{3+}$+chelating agent)/H$_2$O$_2$ system with acetate as a chelating agent removed not only BTEX but also BTEX and MTBE, effectively.

Influence of Lewis Base on the Nonstoichiometry and the Properties of Magnetite Films Prepared by Aqueous Solution Method

  • 김돈;황기순;이정섭;서정철;심현관;김영일
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1313-1318
    • /
    • 1999
  • Lewis bases were employed to control the stoichiometry of ferrite film prepared by light enhanced plating (LEP) technique. When 2,2'-bipyridyl was used as a Lewis base, conversion electron Mosbauer spectroscopy (CEMS) and x-ray powder diffraction (XRD) experiments showed that the main component of the ferrite films was metal-deficient magnetite (Fe3(1-δ)O4). Nonstoichiometry and roughness of LEP films were increased by the addition of 2,2'-bipyridyl. Using ethylenediaminetetraacetate (EDTA) as a Lewis base, produced film that was a mixture of magnetite and Υ-FeO(OH). No low temperature transition (Verwey transition) of magnetite was detected in resistivity and ac-susceptibility measurements for the LEP films. Surface morphology of the LEP films was observed by atomic force microscopy (AFM). The size of dominant particles was about 0.2 μm.

Purification and Some Properties of Polyphenol Oxidase from Arrowroot (칡 뿌리의 Polyphenol Oxidase의 정제 및 성질에 관한 연구)

  • Oh, Man-Jin;Lee, Won-Yong;Lee, Ka-Soon
    • Applied Biological Chemistry
    • /
    • v.31 no.4
    • /
    • pp.331-338
    • /
    • 1988
  • Acetone powder was prepared from raw arrowroots and the polyphenol oxidases of crude enzyme prepared from acetone powder were identified 5 isoenzymes by staining with catechol containing 0.05% phenylene diamine. The crude enzyme was passed through the columns of ion exchangers and gel permeation to fractionate the polyphenol oxidases. The main fraction of polyphenol oxidase appeared to be purified by 94-fold, with the activity yield of 45.4%, and its molecular weight was determined as 38,500 by poly acrylamide gel electrophoresis. The optimal pH and temperature for the enzyme activity were pH 7.5 and $50^{\circ}C$, respectively. The purified enzyme showed a high affinity for catechol and pyrogallol. The Michaelis constant for catechol was calculated to be 16.67mM according to the Lineweaver-Burk method. The enzyme activity was strongly inhibited by L-ascorbic acid, sodium bisulfite, EDTA and KCN, and totally inhibited, by $Fe^{3+}$ at a concentration of 1mM. However the enzyme was activated by $Zn^{2+}$ approximately 1.7 times at the same concentration.

  • PDF