• Title/Summary/Keyword: FeEDTA

Search Result 269, Processing Time 0.028 seconds

Screening for Antioxidant Effects of Aerial Part Extracts Obtained from Sixteen Compositae Species (국화과 식물 16종 지상부 추출물의 항산화효과 탐색)

  • Woo, Jeong Hyang;Shin, So Lim;Chang, Young Deug;Lee, Cheol Hee
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.4
    • /
    • pp.271-278
    • /
    • 2009
  • The attempts to develop natural antioxidants have been made with aerial part of 16 Compositae species by analyzing their phenolic compound contents, scavenging activities on 1,l-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals, ferrous ion chelating effects and inhibition effects on peroxidation of linoleic acids. Total polyphenol and flavonoid contents were highest in Matricaria recutica. Scavenging activity on DPPH and ABTS radicals were highest with extracts of Echinacea angustifolia and Serratula coronata var. insularis f. insularis, respectively. Aerial palt extracts of all species showed lower DPPH scavenging activity than ascorbic acid and 2,6-Di-tert-butyl-4-methylphenol (BHT). But Serratula coronata var. insularis f. insularis demonstrated higher ABTS scavenging activity than ascorbic acid and BHT. In Hieracium pilosella, Echinacea angustifolia, Matricaria reculica extracts showed higher ABTS scavenging activity than BHT. Ferrous ion chelating effects was highest with Matricaria recutica extract, but the effects were much lower than ethylenediaminetetraacetic acid (EDTA). The inhibition activity in lipid peroxidation of linoleic acids was highest in Eupatorium japonicum with 90.06% inhibition 4 days after reaction and 40.52% after 24 days. This demonstrated higher inhibition activity and longer lasting than BHT. Aerial part of Matricaria recutica for extraction source, rather than flower, has higher potential for antiox.idant material. In conclusion, development of natural antioxidants in Compositae is possible by studying antioxidant activity of each species.

Recovery of Nickel from Waste Iron-Nickel Alloy Etchant and Fabrication of Nickel Powder (에칭 폐액으로부터 용매추출과 가수분해를 이용한 니켈분말제조에 관한 연구)

  • Lee, Seokhwan;Chae, Byungman;Lee, Sangwoo;Lee, Seunghwan
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.14-18
    • /
    • 2019
  • In general after the etching process, waste etching solution contains metals. (ex. Nickel (Ni), Chromium (Cr), Zinc (Zn), etc.) In this work, we proposed a recycling process for waste etching solution and refining from waste liquid contained nickel to make nickel metal nano powder. At first, the neutralization agent was experimentally selected through the hydrolysis of impurities such as iron by adjusting the pH. We selected sodium hydroxide solution as a neutralizing agent, and removed impurities such as iron by pH = 4. And then, metal ions (ex. Manganese (Mn) and Zinc (Zn), etc.) remain as impurities were refined by D2EHPA (Di-(2-ethylhexyl) phosphoric acid). The nickel powders were synthesized by liquid phase reduction method with hydrazine ($N_2H_4$) and sodium hydroxide (NaOH). The resulting nickel chloride solution and nickel metal powder has high purity ( > 99%). The purity of nickel chloride solution and nickel nano powders were measured by EDTA (ethylenediaminetetraacetic) titration method with ICP-OES (inductively coupled plasma optical emission spectrometer). FE-SEM (field emission scanning electron microscopy) was used to investigate the morphology, particle size and crystal structure of the nickel metal nano powder. The structural properties of the nickel nano powder were characterized by XRD (X-ray diffraction) and TEM (transmission electron microscopy).

Purification, Characterization, and Cloning of Fibrinolytic Metalloprotease from Pleurotus ostreatus Mycelia

  • Shen, Ming-Hua;Kim, Jae-Sung;Sapkota, Kumar;Park, Se-Eun;Choi, Bong-Suk;Kim, Seung;Lee, Hyun-Hwa;Kim, Chun-Sung;Chun, Hong-Sung;Ryoo, Cheon-In;Kim, Sung-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1271-1283
    • /
    • 2007
  • A fibrinolytic protease (PoFE) was purified from the cultured mycelia of the edible oyster mushroom Pleurotus ostreatus, using a combination of various chromatographies. The purification protocol resulted in an 876-fold purification of the enzyme, with a final yield of 6.5%. The apparent molecular mass of the purified enzyme was estimated to be 32 kDa by SDS-PAGE, fibrin-zymography, and size exclusion using FPLC. The optimal reaction pH value and temperature were pH 6.5 and $35^{\circ}C$, respectively. PoFE effectively hydrolyzed fibrinogen, preferentially digesting the $A{\alpha}$-chain and the $B{\beta}$-chain over the ${\gamma}$-chain. Enzyme activity was enhanced by the addition of $Ca^{2+},\;Zn^{2+},\;and\;Mg^{2+}$ ions. Furthermore, PoFE activity was potently inhibited by EDTA, and it was found to exhibit a higher specificity for the chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The first 19 amino acid residues of the N-terminal sequence were ALRKGGAAALNIYSVGFTS, which is extremely similar to the metalloprotease purified from the fruiting body of P. ostreatus. In addition, we cloned the PoFE protein, encoding gene, and its nucleotide sequence was determined. The cDNA of cloned PoFE is 867 nucleotides long and consists of an open reading frame encoding 288 amino acid residues. Its cDNA showed a high degree of homology with PoMEP from P. ostreatus fruiting body. The mycelia of P. ostreatus may thus represent a potential source of new therapeutic agents to treat thrombosis.

Studies on the alkaline protease produced from Monascus sp. (Monascus 속(屬) 균주(菌株)가 생성(生成)하는 Alkaline Protease에 관(關)한 연구(硏究))

  • Kim, Sang-Dal;Seu, Jung-Hwn
    • Applied Biological Chemistry
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 1972
  • The alkaline protease was isolated from the culture material of monascus sp. on wheat bran culture. The crude purification of this enzyme was extracted with distilled water and precipitated with ammonium sulfate of 0.5 saturation. And, the activity of this enzyme was determind very strongly by folin's colorimetric method. The optimal pH of this enzyme was ranging from pH 10 to 13 and the optimal temperature was $50^{\circ}C$. The pH stability was ranging from pH 5 to 12 and the enzyme activity was not inactivated by heat treatment in lower temperature than $40^{\circ}C$. The enzyme was protected from heat denature by the treatment of $Pb^#$, $Ba^#$, $Co^#$, $Zn^#$, and $Cu^#$, but was inactivated with $Hg^#$, $Fe^#$ strongly. Moreover, one of these metal ions, the cupper ion, has a strong protective activity on enzyme heat denature. And, it was not effected by treatment of EDTA.

  • PDF

Purification and Characterization of the Laccase Involved in Dye Decolorization by the White-Rot Fungus Marasmius scorodonius

  • Jeon, Sung-Jong;Lim, Su-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1120-1127
    • /
    • 2017
  • Marasmius scorodonius secretes an extracellular laccase in potato dextrose broth, and this enzyme was purified up to 206-fold using $(NH_4)_2SO_4$ precipitation and a Hi-trap Q Sepharose column. The molecular mass of the purified laccase was estimated to be ~67 kDa by SDS-PAGE. The UV/vis spectrum of the enzyme was nontypical for laccases, and metal content analysis revealed that the enzyme contains 1 mole of Fe and Zn and 2 moles of Cu per mole of protein. The optimal pH for the enzymatic activity was 3.4, 4.0, and 4.6 with 2,2'-azino-bis(3-ethylbenzothazoline-6-sulfonate) (ABTS), guaiacol, and 2,6-dimethoxy phenol as the substrate, respectively. The optimal temperature of the enzyme was $75^{\circ}C$ with ABTS as the substrate. The enzyme was stable in the presence of some metal ions such as $Ca^{2+}$, $Cu^{2+}$, $Ni^{2+}$, $Mg^{2+}$, $Mn^{2+}$, $Ba^{2+}$, $Co^{2+}$, and $Zn^{2+}$ at a low concentration (1 mM), whereas $Fe^{2+}$ completely inhibited the enzymatic activity. The enzymatic reaction was strongly inhibited by metal chelators and thiol compounds except for EDTA. This enzyme directly decolorized Congo red, Malachite green, Crystal violet, and Methylene green dyes at various decolorization rates of 63-90%. In the presence of 1-hydroxybenzotriazole as a redox mediator, the decolorization of Reactive orange 16 and Remazol brilliant blue R was also achieved.

Enhanced pectinase and β-glucosidase enzyme production by a Bacillus subtilis strain under blue light-emitting diodes

  • Elumalai, Punniyakotti;Lim, Jeong-Muk;Oh, Byung-Teak
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.109-109
    • /
    • 2018
  • Bacillus subtilis B22, a chemotrophic and aerobic bacterial strain was isolated from homemade kimchi, identified by 16S rRNA gene sequencing. B22 was primarily screened by biochemical, carbon source utilization tests. B22 was used to produce pectinase and ${\beta}$-glucosidase by submerged fermentation under different light sources. B22 was incubated in pectin media and basal media (pH 7.0) under blue, green, red and white light-emitting diodes (LEDs), fluorescent white light, and in darkness at $37^{\circ}C$, orbital shaker 150 rpm for 24 hours. Fermentation under blue LEDs maximized pectinase production ($71.59{\pm}1.6U/mL$ at 24 h) and ${\beta}$-glucosidase production ($56.31{\pm}1.6U/mL$ at 24 h). Further, the production of enzyme increased to pectinase ($156{\pm}1.28U/mL$) and ${\beta}$-glucosidase ($172{\pm}1.28U/mL$) with 3% glucose as a carbon source. Activity and stability of the partially purified enzymes were higher at pH 6.0 to 8.0 and $25-55^{\circ}C$. The effect on the metal ions $Na^+$ and $K^+$ and (moderateactivity) $Mn^{2+}$ and $Ni^{2+}$ increased activity, while $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, and $Fe^{2+}$ inhibited activity. EDTA, phenylmethylsulfonyl fluoride and 5,5-dithiobis (2-nitrobenzoicacid) reduced activity, while tetrafluoroethylene and 1,10-phenanthroline inhibited activity. The amylase was highly tolerant of the surfactants TritonX-100, Tween-20, Tween-80 and compatible with organic solvents methanol, ethanol, isoamylalcohol, isopropanol, t-butylalcohol and the oxidizing agents hydrogen peroxide, sodium perborate and sodium hypochlorite, although potassium iodide and ammonium persulfate reduced activity. These properties suggest utility of pectinase and ${\beta}$-glucosidase produced by B. subtilis B22 under blue LED-mediated fermentation for industrial applications.

  • PDF

Cloning, Expression, and Characterization of a Cold-Adapted Lipase Gene from an Antarctic Deep-Sea Psychrotrophic Bacterium, Psychrobacter sp. 7195

  • Zhang, Jinwei;Lin, Shu;Zeng, Runying
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.604-610
    • /
    • 2007
  • A psychrotrophic strain 7195 showing extracellular lipolytic activity towards tributyrin was isolated from deep-sea sediment of Prydz Bay and identified as a Psychrobacter species. By screening a genomic DNA library of Psychrobacter sp. 7195, an open reading frame of 954 bp coding for a lipase gene, lipA1, was identified, cloned, and sequenced. The deduced LipA1 consisted of 317 amino acids with a molecular mass of 35,210 kDa. It had one consensus motif, G-N-S-M-G (GXSXG), containing the putative active-site serine, which was conserved in other cold-adapted lipolytic enzymes. The recombinant LipA1 was purified by column chromatography with DEAE Sepharose CL-4B, and Sephadex G-75, and preparative polyacrylamide gel electrophoresis, in sequence. The purified enzyme showed highest activity at $30^{\circ}C$, and was unstable at temperatures higher than $30^{\circ}C$, indicating that it was a typical cold-adapted enzyme. The optimal pH for activity was 9.0, and the enzyme was stable between pH 7.0-10.0 after 24h incubation at $4^{\circ}C$. The addition of $Ca^{2+}\;and\;Mg^{2+}$ enhanced the enzyme activity of LipA1, whereas the $Cd^{2+},\;Zn^{2+},\;CO^{2+},\;Fe^{3+},\;Hg^{2+},\;Fe^{2+},\;Rb^{2+}$, and EDTA strongly inhibited the activity. The LipA1 was activated by various detergents, such as Triton X-100, Tween 80, Tween 40, Span 60, Span 40, CHAPS, and SDS, and showed better resistance towards them. Substrate specificity analysis showed that there was a preference for trimyristin and p-nitrophenyl myristate $(C_{14}\;acyl\; groups)$.

A Novel Metalloprotease from the Wild Basidiomycete Mushroom Lepista nuda

  • Wu, Y.Y.;Wang, H.X.;Ng, T.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.3
    • /
    • pp.256-262
    • /
    • 2011
  • A 20.9-kDa metalloprotease was isolated from dried fruiting bodies of the wild basidiomycete mushroom Lepista nuda. The N-terminal amino acid sequence of the protease was seen to be ATFVLTAATNTLFTA, thus displaying no similarity with the sequences of previously reported metalloproteases. The protease was purified using a procedure that entailed ion-exchange chromatography on CM-Cellulose, Q-Sepharose, and Mono S, and FPLC-gel filtration on Superdex 75. The protease functioned at an optimum pH of 7.0 and an optimum temperature of $50^{\circ}C$. It was also noted that the protease demonstrated a proteolytic activity of 1,756 U/mg toward casein. The $K_m$ of the purified protease toward casein was 6.36 mg/ml at a pH of 7.0 and with a temperature of $37^{\circ}C$, whereas the $V_{max}$ was 9.11 ${\mu}g\;ml^{-1}\;min^{-1}$. The activity of the protease was adversely affected by EDTA-2Na, suggesting that it is a metalloprotease. PMSF, EGTA, aprotinin, and leupeptin exerted no striking inhibitory effect. The activity of the protease was enhanced by $Fe^{2+}$, but was curtailed by $Cd^{2+}$, $Cu^{2+}$, $Hg^{2+}$, $Pb^{2+}$, $Zn^{2+}$, and $Fe^{2+}$ ions. The protease also exhibited inhibitory activity against HIV-1 reverse transcriptase with an $IC_{50}$ value of 4.00 ${\mu}M$. The $IC_{50}$ values toward hepatoma Hep G2 and leukemia L1210 cells in vitro were 4.99 ${\mu}M$ and 3.67 ${\mu}M$, respectively.

Isolation, Purification, and Characterization of a Thermostable Xylanase from a Novel Strain, Paenibacillus campinasensis G1-1

  • Zheng, Hongchen;liu, Yihan;Liu, Xiaoguang;Wang, Jianling;Han, Ying;Lu, Fuping
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.930-938
    • /
    • 2012
  • High levels of xylanase activity (143.98 IU/ml) produced by the newly isolated Paenibacillus campinasensis G1-1 were detected when it was cultivated in a synthetic medium. A thermostable xylanase, designated XynG1-1, from P. campinasensis G1-1 was purified to homogeneity by Octyl-Sepharose hydrophobic-interaction chromatography, Sephadex G75 gel-filter chromatography, and Q-Sepharose ion-exchange chromatography, consecutively. By multistep purification, the specific activity of XynG1-1 was up to 1,865.5 IU/mg with a 9.1-fold purification. The molecular mass of purified XynG1-1 was about 41.3 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Sequence analysis revealed that XynG1-1 containing 377 amino acids encoded by 1,134 bp genomic sequences of P. campinasensis G1-1 shared 96% homology with XylX from Paenibacillus campinasensis BL11 and 77%~78% homology with xylanases from Bacillus sp. YA-335 and Bacillus sp. 41M-1, respectively. The activity of XynG1-1 was stimulated by $Ca^{2+}$, $Ba^{2+}$, DTT, and ${\beta}$-mercaptoethanol, but was inhibited by $Ni^{2+}$, $Fe^{2+}$, $Fe^{3+}$, $Zn^{2+}$, SDS, and EDTA. The purified XynG1-1 displayed a greater affinity for birchwood xylan, with an optimal temperature of $60^{\circ}C$ and an optimal pH of 7.5. The fact that XynG1-1 is cellulose-free, thermostable (stability at high temperature of $70^{\circ}C{\sim}80^{\circ}C$), and active over a wide pH range (pH 5.0~9.0) suggests that the enzyme is potentially valuable for various industrial applications, especially for pulp bleaching pretreatment.

Characterization of a Recombinant Thermostable Xylanase from Hot Spring Thermophilic Geobacillus sp. TC-W7

  • Liu, Bin;Zhang, Ningning;Zhao, Chao;Lin, Baixue;Xie, Lianhui;Huang, Yifan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1388-1394
    • /
    • 2012
  • A xylanase-producing thermophilic strain, Geobacillus sp. TC-W7, was isolated from a hot spring in Yongtai (Fuzhou, China). Subsequently, the xylanase gene that encoded 407 amino acids was cloned and expressed. The recombinant xylanase was purified by GST affinity chromatography and exhibited maximum activity at $75^{\circ}C$ and a pH of 8.2. The enzyme was active up to $95^{\circ}C$ and showed activity over a wide pH range of 5.2 to 10.2. Additionally, the recombinant xylanase showed high thermostability and pH stability. More than 85% of the enzyme's activity was retained after incubation at $70^{\circ}C$ for 90 min at a pH of 8.2. The activity of the recombinant xylanase was enhanced by treatment with 10 mM enzyme inhibitors (DDT, Tween-20, 2-Me, or TritonX-100) and was inhibited by EDTA or PMSF. Its functionality was stable in the presence of $Li^+$, $Na^+$, and $K^+$, but inhibited by $Hg^{2+}$, $Ni^{2+}$, $Co^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Pb^{2+}$, $Fe^{3+}$, and $Al^{3+}$. The functionality of the crude xylanase had similar properties to the recombinant xylanase except for when it was treated with $Al^{2+}$ or $Fe^{2+}$. The enzyme might be a promising candidate for various industrial applications such as the biofuel, food, and paper and pulp industries.