• 제목/요약/키워드: FeAlSi

검색결과 884건 처리시간 0.025초

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

급랭응고한 Al-Fe 합금계 리본을 고온에 노출시킴에 따른 미세석출물의 성장거동 (Coarsening Behavior of Fine Precipitates in Rapidly Quenched Al-Fe Based Alloy Ribbons by In-situ Heat Treatment)

  • 백남익
    • 한국주조공학회지
    • /
    • 제15권3호
    • /
    • pp.252-261
    • /
    • 1995
  • The purposes of this study were to investigate the microstructural changes in alloy ribbons of Al-Fe-Mo-Si quarternary system at $450{\sim}500^{\circ}C$, and to study the coarsening mechanism of fine precipitates. Using the hot stage in TEM, in situ microstructural changes in Al-4Fe-0.5Mo-1.5Si alloy ribbon and Al-8Fe-2Mo-1.5Si alloy ribbon have been examined successively up to 60 hours at $450^{\circ}C$ and $500^{\circ}C$. Cell structure in zone B of Al-4Fe-0.5Mo-1.5Si alloy ribbon was observed to collapse even in 10 minutes by in-situ heating at $450^{\circ}C$ and the size of precipitates in zone B increased twice in 60 hours. The precipitates in zone A of Al-4Fe-0.5Mo-1.5Si alloy ribbon showed slower coarsening rate than those in zone B by in-situ heating at $450^{\circ}C$. The precipitates in zone A of Al-8Fe-2Mo-1.5Si alloy ribbon increased 50% by in-situ heating at $500^{\circ}C$ in 50 hours compared to the initial precipitates while any microstructual change in zone B was not observed by in-situ heating at $500^{\circ}C$ up to 50 hours. Only the precipitates in zone A of Al-4Fe-0.5Mo-1.5Si alloy ribbon satisfied $r^3{\propto}t$ relationship of coarsening mechanism.

  • PDF

복합주조용 Al-Si-Mg합금의 미세조직 및 인장성질에 미치는 Fe 및 Cu 첨가의 영향 (Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting)

  • 김정민;정기채;김채영;신제식
    • 한국주조공학회지
    • /
    • 제41권1호
    • /
    • pp.3-10
    • /
    • 2021
  • 알루미늄 합금과 주철의 복합주조 공정 중에는 주철로부터 철 성분이 용해되어 알루미늄 용탕에 혼입될 수 있으므로 다양한 Fe함유 금속간 화합물이 형성되며, 이로 인해 알루미늄 합금의 인장 특성이 크게 저하 될 수 있다. 반면 불순물로 첨가되는 Fe와 는 달리 Cu의 경우 알루미늄 합금의 기계적 물성을 향상시키기 위해 첨가되는 합금원소이다. 본 연구에서는 Fe와 Cu의 첨가로 인한 알루미늄 합금의 미세조직 및 인장특성의 변화를 조사하였다. 첨가된 Fe 함량이 1% 이상일 경우 조대한 Al5FeSi 상과 같은 Fe 함유 화합물들이 다량 형성되어 인장 특성이 현저히 감소하는 것으로 나타났다. Cu가 첨가 된 알루미늄 합금의 경우 Al2Cu 상이 추가로 형성되었으며, 인장 강도가 뚜렷하게 향상되는 결과를 보였다.

Microstructural Features of Multicomponent FeCoCrNiSix Alloys

  • Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • 제45권1호
    • /
    • pp.32-36
    • /
    • 2015
  • The microstructural features of FeCoCrNi, FeCoCrNiAl and FeCoCrNiSix (x=0, 5, 10, 15, 20) alloys have been investigated in the present study. The microstructure of FeCoCrNi alloy changes dramatically with equiatomic addition of Al. The fcc irregular shaped grain structure in the as-cast FeCoCrNi alloy changes into the bcc interconnected structure with phase separation of Al-Ni rich and Cr-Fe rich phases in the as-cast FeCoCrNiAl alloy. The microstructure of FeCoCrNi alloy changes with the addition of Si. With increasing the amount of Si, the fcc structure of the grains is maintained, but new phase containing higher amount of Si forms at the grain boundary. As the amount of Si increases, the fraction the Si-rich grain boundary phase increases.

SKD61 금형강의 소착 반응층 두께에 미치는 Al-9wt%Si-0.3wt%Mg 합금의 Fe, Mn 영향 (Effect of Fe, Mn Contents of Al-9wt%Si-0.3wt%Mg Alloys on the Thickness of Die Soldering Reaction Layer for SKD61 Die Steel)

  • 김헌주;조치만;정창렬
    • 한국주조공학회지
    • /
    • 제29권4호
    • /
    • pp.169-175
    • /
    • 2009
  • Effect of iron and manganese contents on die soldering reaction has been studied in Al-9wt.%Si-0.3wt.%Mg alloy. Ternary ${\alpha}_{hcp}-Al_8Fe_2Si$ and ${\alpha}_{bcc}-Al_8Fe_2Si$ intermetallic compounds formed by interaction diffusion between Al-Si-Mg system alloy melt and SKD61 die steel surface. Thickness of soldering reaction layer in die steel surface decreased as Fe and Mn contents of the melts increased : When Fe content of Al-9wt.%Si-0.3wt.%Mg melts at constant 0.5wt%Mn content was 0.15wt.%, 0.45wt.% and 0.6wt.%, thickness of soldered layer of each alloy was $64.5{\mu}m,\;57.3{\mu}m$ and $46.9{\mu}m$ respectively. For Mn content of the alloy melts at constant 0.45wt.%Fe content was 0.30wt.%, 0.50wt.% and 0.70wt.%, thickness of soldered layer of each alloy was $66.1{\mu}m,\;57.3{\mu}m$ and $48.3{\mu}m$ respectively.

Microstructure and Mechanical Properties of Rapidly Solidified Powder Metallurgy Al-Fe-V-Si-X Alloys

  • Genkawa, Takuya;Yamasaki, Michiaki;Kawamura, Yoshihito
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1041-1042
    • /
    • 2006
  • High heat-resistant Al-Fe-V-Si and Al-Fe-V-Si-X rapidly solidified powder metallurgy (RS P/M) alloys have been developed under well-controlled high purity argon gas atmosphere. The $Al_{90.49}Fe_{6.45}V_{0.68}Si_{2.38}$ (at. %) RS P/M alloy exhibited high elevated-temperature strength exceeding 300 MPa and good ductility with elongation of 6 % at 573 K. Reduction of $H_2O$ partical pressure in P/M processing atmosphere led to improvement in mechanical properties of the powder-consolidated alloys under elevated-temperature service conditions. Ti addition to the Al-Fe-V-Si conduced to enhancement of the strength at room temperature. The tensile yeild strength and ultimate strenght were 545 MPa and 722 MPa, respectively.

  • PDF

급속응고 Al-20Si-5Fe-xPb(x=2, 4, 6 wt.%) 합금의 미세조직과 마모거동 (Microstructure and Wear Behaviour of Rapidly Solidified Al-20Si-5Fe-zPb(x=2, 4, 6wt.%) Alloys)

  • 김택수
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.96-102
    • /
    • 1999
  • The effect of Pb addition on microstructure and wear resistance was studied in rapidly solidified Al-20Si-5Fe-xPb(x=2, 4, 6 wt.%) alloys. The R/S Al-20Si-5Fe-xPb (x=2, 4, 6 wt.%) alloys showed a fine and homogeneous microstructure and an improved wear property compared with Al-20Si-5Fe alloy, while no significant change in UTS (Ultimate Tensile Strength) was shown. Contribution of the dispersoids on the wear property was discussed by showing the plastic deformation layers formed during wear track.

  • PDF

Effect of Aluminum and Silicon on Atmospheric Corrosion of Low-alloying Steel under Containing NaHSO3 Wet/dry Environment

  • Chen Xinhua;Dong Junhua;Han Enhou;Ke Wei
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.315-318
    • /
    • 2008
  • The atmospheric corrosion performance of Al-alloying, Si-alloying and Al-Si-alloying steel were studied by wet/dry cyclic corrosion tests (CCT) at $30^{\circ}C$ and 60% relative humidity (RH). The corrosion electrolyte used for CCT was 0.052 wt% $NaHSO_{3}$ (pH~4) solution. The result of gravimetry demonstrated that Al-Si-bearing steels showed lower corrosion resistance than other rusted steels. But the rusted 0.7%Si-alloying steel showed a better corrosion resistance than rusted mild steel. Polarization curves demonstrated that Al-/Si-alloying and Al-Si-alloying improved the rest potential of steel at the initial stage; and accelerated the cathodic reduction and anodic dissolution after a rust layer formed on the surfaces of steels. XRD results showed that Al-Si-alloying decreased the volume fraction of $Fe_{3}O_{4}$ and $\alpha-FeOOH$. The recycle of acid accelerated the corrosion of steel at the initial stage. After the rust layer formed on the steel, the leak of rust destabilized the rust layer due to the dissolution of compound containing Al (such as $FeAl_{2}O_{4}$, $(Fe,\;Si)_{2}(Fe,\;Al)O_{4}$). Al-Si-alloying is hence not suitable for improving the anti-corrosion resistance of steel in industrial atmosphere.

Fe과 Si의 첨가가 주조용 고강도 Al-Cu-Mn-Ti-Zr-Cd 합금의 시효경화거동에 미치는 영향 (Effects of Fe and Si Additions on the Ageing Behaviors for High Strength Al-Cu-Mn-Ti-Zr-Cd Casting Alloys)

  • 김철효;이정무;김경현;김인배
    • 한국주조공학회지
    • /
    • 제24권1호
    • /
    • pp.45-51
    • /
    • 2004
  • Fe and Si are common impurity elements in the aluminum alloys. In this investigation, the effects of the addition of Fe and Si on the age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd casting alloys were examined through hardness measurements, calorimetric techniques and observation of the transmission electron microscopy. The addition of Fe depresses the formation of GPII and ${\theta}'$, and thus retards the peak aging time and reduces the peak hardness of the Al-Cu-Mn-Ti-Zr-Cd alloys. On the contrary, the addition of Si accelerates the formation of GPII and ${\theta}'$ and thus accelerates age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd alloys.