• Title/Summary/Keyword: Fe-doping

Search Result 208, Processing Time 0.028 seconds

Change of Electrochemical Characteristics Due to the Fe Doping in Lithium Manganese Oxide Electrode

  • Ju Jeh Beck;Kang Tae Young;Cho Sung Jin;Sohn Tae Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.3
    • /
    • pp.131-137
    • /
    • 2004
  • Sol-gel method which provides better electrochemical and physiochemical properties compared to the solid-state method was used to synthesize the material of $LiFe_yMn_{2-y}O_4$. Fe was substituted to increase the structural stability so that the effects of the substitution amount and sintering temperature were analyzed. XRD was used for the structural analysis of produced material, which in turn, showed the same cubic spinel structure as $LiMn_2O_4$ despite the substitution of $Fe^{3+}$. During the synthesis of $LiFe_yMn_{2-y}O_4$, as the sintering temperature and the doping amount of Fe(y=0.05, 0.1, 0.2)were increased, grain growth proceeded which in turn, showed a high crystalline and a large grain size, certain morphology with narrow specific surface area and large pore volume distribution was observed. In order to examine the ability for the practical use of the battery, charge-discharge tests were undertaken. When the substitution amount of $Fe^{3+}\;into\;LiMn_2O_4$ increased, the initial discharge capacity showed a tendency to decrease within the region of $3.0\~4.2V$ but when charge-discharge processes were repeated, other capacity maintenance properties turned out to be outstanding. In addition, when the sintering temperature was $800\~850^{\circ}C$, the initial capacity was small but showed very stable cycle performance. According to EVS(electrochemical voltage spectroscopy) test, $LiFe_yMn_{2-y}O_4(y=0,\;0.05,\;0.1,\;0.2)$ showed two plateau region and the typical peaks of manganese spinel structure when the substitution amount of $Fe^{3+}$ increased, the peak value at about 4.15V during the charge-discharge process showed a tendency to decrease. From the previous results, the local distortion due to the biphase within the region near 4.15V during the lithium extraction gave a phase transition to a more suitable single phase. When the transition was derived, the discharge capacity decreased. However the cycle performance showed an outstanding result.

Synthesis of conducting and magnetic nanocomposite of cross-linked aniline sulfide resin

  • Hosseini, Seyed Hossein
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.233-242
    • /
    • 2014
  • Magnetic and conducting aniline sulfide resin cross-linked (ASC-Fe3O4) nanocomposite has been prepared in the presence of aniline sulfide resin (ASR), aniline, $Fe_3O_4$ coated by polyethylene glycol (PEG) and initiator. The magnetic properties of the resulting composites showed ferromagnetic behavior, such as high-saturated magnetization (Ms= 41 emu/g), and coercive force (Hc=1.5 Oe). The saturated magnetization was increased by increasing of $Fe_3O_4$ content and decreased by increasing aniline ratio. The transmission electron micrograph (TEM) and X-ray diffraction proved that nanometer-sized about 20-30 nm $Fe_3O_4$ in the composite. The average size of ASC-$Fe_3O_4$ nanocomposite with core-shell structure was about 50-60 nm, and polydisperse. This approach may also be extended to the synthesis and modification of other polymers. Electrical conductivity of aniline sulfide resin cross-linked (ASC) nanocomposite has been studied by four-point probe method and produced $3.3{\times}10^{-4}S/cm$ conductivity for it. The conductivity of the composites at room temperature depended on the $Fe_3O_4$, aniline ratio and doping degree. The thermogravimetry analysis (TGA) results showed that this resin is thermal resistance near of $500^{\circ}C$. So, It can be used for resistance thermal coating for military applications. $Fe_3O_4$-PASC nanocomposite has been flexible structure with electrical and magnetic properties.

Improved Cycle Performance of Sulfur-Doped LiFePO4 Material at High Temperatures

  • Lee, Seung-Byung;Cho, Seung-Hyun;Aravindan, Vanchiappan;Kim, Hyun-Soo;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2223-2226
    • /
    • 2009
  • Pristine and sulfur-doped (LiFe$PO_{3.98}S_{0.03}$) lithium iron phosphates were synthesized by a sol-gel method. The XRD pattern of the prepared materials suggested an orthorhombic structure with a Pnma space group and an absence of impurities. The Li/LiFe$PO_4$ or LiFe$PO_{3.98}S_{0.03}$ cells were employed for cycling studies at various temperatures (25, 50 and $60\;{^{\circ}C}$). In all cases, the Li/LiFe$PO_{3.98}S_{0.03}$ cell showed an improved performance with a stable discharge behavior of ~155 mA$hg^{-1}$. Nevertheless, pristine LiFeP$O_4$ cells presented poor discharge behavior at elevated temperatures, especially $60\;{^{\circ}C}$.

Synthesis and Characterization of Soluble Polypyrrole with High Conductivity (높은 전기 전도성을 갖는 가용성 폴리피롤 합성 및 특성)

  • Hong, Jang-Hoo;Jang, Kwan-Sik
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.234-238
    • /
    • 2007
  • Highly conducting Polypyrroles soluble in organic solvents were synthesized using functional doping agents, such as mixed dopants [sodium di(2-ethylhexyl)sulfosuccinate (DEHSNa) Naphthalenesulfonic acid (NSA), DEHSNa Toluenesulfonic acid (TSA), DEHSNa Dodecylbenzensulfonic acid (DBSA)] and mixed oxidants [$(NH_4)_2S_2O_8{\cdot}FeCl_3$, $(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$]. Ppy-DEHS powder using an oxidant, such as $(NH_4)_2S_2O_8$ (10 wt%/vol.) showed higher solubility than the mixed dopant (DEHSNa NSA, 3 wt%/vol.) and mixed oxidant [$(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$, 4 wt%/vol.] in DMF solvent. But Ppy-DEHS free standing film using a mixed dopant, such as DEHSNa NSA (16 S/cm) and a mixed oxidant, such as $(NH_4)_2S_2O_8{\cdot}Fe_2(SO_4)_3$ (13 S/cm) cast from DMF solvent showed higher electrical conductivity than $(NH_4)_2S_2O_8$ (2 S/cm). For the Ppy-DEHS films using various condition cast from DMF solvent, three dimensional various range hopping model (3D VRH ; $\{{\sigma}_{dc}(T)={\sigma}_oexp[-(T_o/T)^{1/4}]\}$) provided fit to the results of temperature dependence of electrical conductivity measurement.

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • Ryu, Ji-Seung;No, Tae-Min;Kim, Jin-Seong;Jeong, Cheol-Won;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

Improving Electrochemical Properties of LiFePO4 by Doping with Gallium

  • Nguyen, Van Hiep;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.320-323
    • /
    • 2014
  • Ga-doped $LiFePO_4$ cathode materials were synthesized using a hydrothermal method. The microstructural characteristics and electrochemical performances were systematically investigated using field emission scanning electron microscopy, high-resolution X-ray diffraction, energy dispersive X-ray spectroscopy, charge-discharge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Among the as-prepared samples, $LiFe_{0.96}Ga_{0.04}PO_4$ demonstrates the best electrochemical properties in terms of discharge capacity, electrochemical reversibility, and cycling performance with an initial discharge capacity of $125mAh\;g^{-1}$ and high lithium ion diffusion coefficient of $1.38{\times}10^{-14}cm^2s^{-1}$ (whereas for $LiFePO_4$, these were $113mAh\;g^{-1}$ and $8.09{\times}10^{-15}cm^2\;s^{-1}$, respectively). The improved electrochemical performance can be attributed to the facilitation of Li+ ion effective diffusion induced by $Ga^{3+}$ substitution.

Electronic Structure Studies on $Ba(Fe_{1-x}Ru_x)_2As_2$ by Photoemission (광전자 분석 실험을 이용한 $Ba(Fe_{1-x}Ru_x)_2As_2$ 물질의 전자구조분석)

  • Jung, W.S.;Kim, Y.K.;Kim, B.Y.;Matsunami, M.;Kimura, S.;Eom, M.J.;Kim, J.S.;Kim, C.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.99-103
    • /
    • 2011
  • We performed angle resolved photoelectron spectroscopy (ARPES) studies on Ru doped $BaFe_2As_2$ with various Ru contents. Ru, which is doped into a parent compound $BaFe_2As_2$ and substitute Fe, does not donate or accept electrons. However, it induces superconductivity. From ARPES data along the high symmetry cuts and Fermi surface maps, we investigate the electron correlation and carrier density at the Fermi level. We observe that the Fermi velocity increases with Ru doping, suggesting reduction in electron correlation. In addition, we address issues on local vs. itinerant pictures for the magnetism in $BaFe_2As_2$.

Preparation and Characterization of Doped $Fe_2O_3$ and GaAs Photosemiconductive Electrodes for $CO_2$ Fixation

  • Kim, Il Kwang;Lee, Seong Jae;Kim, Min Su;Jeong, Seung Il;Park, Byung Sun;Kim, Youn Geun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.669-674
    • /
    • 1995
  • The preparation and characterization of photosemiconductive electrodes of GaAs and of $Fe_2O_3$ doped with MgO or CaO were investigated. The doped $Fe_2O_3$ photosemiconductive electrodes were prepared from thin films sintered at temperatures from 1,100 to $1,450^{\circ}C$, and rapidly quenched in distilled water. The surfaces of the electrodes containing both corundum structure of $Fe_2O_3$ and spinel structure of $Mg_xFe_{3-x}O_4$ or $Ca_xFe_{3-x}O_4$ were analyzed by X-ray diffraction and scanning electron microscopy. The cathodic and anodic photocurrents on these electrodes indicated a critical doping amount of 5-11 wt. %. The photocurrents were enhanced when GaAs electrodes were treated with methylene violet the anodic photo-currents were temporarial enhanced and changed to the cathodic ptotocurrents after the surface was dryed.

  • PDF

Fabrication details of Ba1-xKxFe2As2 films by pulsed laser deposition technique

  • Lee, Nam Hoon;Jung, Soon-Gil;Ranot, Mahipal;Kang, Won Nam
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.4-6
    • /
    • 2014
  • Among Fe-based superconductors, potassium doped $BaFe_2As_2$ is favorable for applications because of its relatively high transition temperature and low anisotropy. To study the superconducting properties and the applicable aspects, high quality thin films of potassium doped $BaFe_2As_2$ should be fabricate. However, the high volatility of potassium makes it difficult to fabricate thin films of this compound. In this paper, we discuss the details of the experimental conditions used to fabricate $Ba_{1-x}K_xFe_2As_2$ films by ex situ PLD method. In the first set of samples, barium ratio in the target was controlled to make films with various potassium doping rate. However, in the second set of samples, the amount of potassium was controlled to find out optimal conditions for making high quality $Ba_{1-x}K_xFe_2As_2$ films.