• Title/Summary/Keyword: Fe-based powders

Search Result 95, Processing Time 0.027 seconds

Quality Characteristics and Storage Properties of Wet Noodle with Added Cheonnyuncho Fruit Powder (천년초 열매 분말을 첨가하여 제조한 생면의 품질특성과 저장성)

  • Jung, Bok-Mi
    • Korean journal of food and cookery science
    • /
    • v.26 no.6
    • /
    • pp.821-830
    • /
    • 2010
  • This study was carried out to investigate the quality characteristics and storage of wet noodle with added Cheonnyuncho powder. Wet noodles were prepared at concentration of 1, 3, and 5%(w/w) of the fruit based on flour weight. Moisture content of the noodles with or without Cheonnyuncho powder was 34~36%. Ca, K, Mg, Fe, Mn and Zn contents of Cheonnyuncho noodle were increased at increasing concentrations of Cheonnyuncho powder. Cooked weight, volume, and water absorption decreased with increased fruit powder, whereas turbidity increased. For hunter's color values of noodles, L(lightness) and b(yellowness) values decreased with increasing concentration of Cheonnyuncho powder, whereas a(redness) value increased. For mechanical characteristics of the noodles, adhesiveness, cohesiveness, chewiness, elasticity, and brittleness of cooked noodle with Cheonnyuncho powder were lower than those of control. The pH of Cheonnyuncho noodle was lower than that of control during storage. Bacterial counts of wet noodle with 1% and 3% fruit powders were lower than those of the control and 5% fruit powder on the 8th day of storage at $5^{\circ}C$. From the sensory evaluation, texture, taste, and overall preference were not significantly different between the control and fruit group, but the color of 5% Cheonnyuncho noodle was significantly higher than that of control (p<0.05). In conclusion, the results of this study suggest that the addition of 1% and 3% Cheonnyuncho powder in combination with flour tended to improve antimicrobial effects during storage when compared to control.

Effects of High-Energy Ball Milling and Sintering Time on the Electric-Field-Induced Strain Properties of Lead-Free BNT-Based Ceramic Composites

  • Nga-Linh Vu;Nga-Linh Vu;Dae-Jun Heo;Thi Hinh Dinh;Chang Won Ahn;Chang Won Ahn;Hyoung-Su Han;Jae-Shin Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.505-512
    • /
    • 2023
  • This study investigated crystal structures, microstructures, and electric-field-induced strain (EFIS) properties of Bi-based lead-free ferroelectric/relaxor composites. Bi1/2Na0.82K0.18)1/2TiO3 (BNKT) as a ferroelectric material and 0.78Bi1/2(Na0.78K0.22)1/2TiO3-0.02LaFeO3 (BNKT2LF) as a relaxor material were synthesized using a conventional solid-state reaction method, and the resulting BNKT2LF powders were subjected to high-energy ball milling (HEBM) after calcination. As a result, HEBM proved a larger average grain size of sintered samples compared to conventional ball milling (CBM). In addition, the increased sintering time led to grain growth. Furthermore, HEBM treatment and sintering time demonstrated a significant effect on EFIS of BNKT/BNKT2LF composites. At 6 kV/mm, 0.35% of the maximum strain (Smax) was observed in the HEBM sample sintered for 12 h. The unipolar strain curves of CBM samples were almost linear, indicating almost no phase transitions, while HEBM samples displayed phase transitions at 5~6 kV/mm for all sintering time levels, showing the highest Smax/Emax value of 700 pm/V. These results indicated that HEBM treatment with a long sintering time might significantly enhance the electromechanical strain properties of BNT-based ceramics.

The Influence of a Single Melt Pool Morphology on Densification Behavior of Three-Dimensional Structure Fabricated by Additive Manufacturing (적층 가공된 3차원 조형체의 치밀화에 미치는 단일 melt pool 형상의 영향)

  • Choe, Jungho;Yun, Jaecheol;Yang, Dong-Yeol;Yang, Sangsun;Yu, Ji-Hun;Lee, Chang-Woo;Kim, Yong-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • Selective laser melting (SLM) can produce a layer of a metal powder and then fabricate a three-dimensional structure by a layer-by-layer method. Each layer consists of several lines of molten metal. Laser parameters and thermal properties of the materials affect the geometric characteristics of the melt pool such as its height, depth, and width. The geometrical characteristics of the melt pool are determined herein by optical microscopy and three-dimensional bulk structures are fabricated to investigate the relationship between them. Powders of the commercially available Fe-based tool steel AISI H13 and Ni-based superalloy Inconel 738LC are used to investigate the effect of material properties. Only the scan speed is controlled to change the laser parameters. The laser power and hatch space are maintained throughout the study. Laser of a higher energy density is seen to melt a wider and deeper range of powder and substrate; however, it does not correspond with the most highly densified three-dimensional structure. H13 shows the highest density at a laser scan speed of 200 mm/s whereas Inconel 738LC shows the highest density at 600 mm/s.

Development of Zn-Al thermal diffusion coating technology for improving anti-corrosion of various metal products (다양한 금속 부품의 내식성 향상을 위한 Zn-Al 열 확산 코팅 기술 개발)

  • Lee, Joo-Young;Lee, Joo-Hyung;Hwang, Joon;Lee, Yong-Kyu
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.195-203
    • /
    • 2014
  • Modern industry has a wide variety of application areas such as ocean industry, construction and automobile industry. With the current circumstances, the need for anti-corrosion technology that can be used on materials to withstand in harsh environments, is increasing. In this study, we have sought to develop a metal coating technology with zinc and aluminum powders as a potential anti-corrosion material. To make a coating on metal products, a thermal diffusion coating method was used under the conditions of $350^{\circ}C$ for 30 minutes. Optical microscope, Field emission scanning electron microscope (FE-SEM&EDX) and X-ray diffraction analysis were used to analyze a coating layer. As a result, we have confirmed that the generated amount of rust on metal parts coated with thermal diffusion coating method decreased dramatically compared with non-coated metal parts. Furthermore, the anti-corrosion performance was evaluated according to the different ratio of zinc and aluminum. Finally, we confirmed the possibility of application and commercialization of our coating technique on metal parts used in harsh industrial based on the results of these performance.

Development and Evaluation of Natural Hydroxyapatite Ceramics Produced by the Heat Treatment of Pig Bones

  • Lim, Ki-Taek;Kim, Jin-Woo;Kim, Jangho;Chung, Jong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.227-234
    • /
    • 2014
  • Purpose: The aim of this research was to develop and evaluate natural hydroxyapatite (HA) ceramics produced from the heat treatment of pig bones. Methods: The properties of natural HA ceramics produced from pig bones were assessed in two parts. Firstly, the raw materials were characterized. A temperature of $1,200^{\circ}C$ was chosen as the calcination temperature. Fine bone powders (BPs) were produced via calcinations and a milling process. Sintered BPs were then characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, and a 2-year in vitro degradability test. Secondly, an indirect cytotoxicity test was conducted on human osteoblast-like cells, MG63, treated with the BPs. Results: The average particle size of the BPs was $20{\pm}5{\mu}m$. FE-SEM showed a non-uniform distribution of the particle size. The phase obtained from XRD analysis confirmed the structure of HA. Elemental analysis using XRF detected phosphorus (P) and calcium (Ca) with the Ca/P ratio of 1.6. Functional groups examined by FTIR detected phosphate ($PO{_4}^{3-}$), hydroxyl ($OH^-$), and carbonate ($CO{_3}^{2-}$). The EDX, XRF, and FTIR analysis of BPs indicated the absence of organic compounds, which were completely removed after annealing at $1,200^{\circ}C$. The BPs were mostly stable in a simulated body fluid (SBF) solution for 2 years. An indirect cytotoxicity test on natural HA ceramics showed no threat to the cells. Conclusions: In conclusion, the sintering temperature of $1,200^{\circ}C$ affected the microstructure, phase, and biological characteristics of natural HA ceramics consisting of calcium phosphate. The Ca-P-based natural ceramics are bioactive materials with good biocompatibility; our results indicate that the prepared HA ceramics have great potential for agricultural and biological applications.