• 제목/요약/키워드: Fe-Si-Cr powder

검색결과 38건 처리시간 0.033초

FeSiCr에 Fe50Ni가 첨가된 폴리머 복합 시트의 전자파 흡수 특성 (Electromagnetic Wave Absorbing Properties of FeSiCr and Fe50Ni Flaky Powder-Polymer Composite Sheet)

  • 이석문;김상문
    • 한국전기전자재료학회논문지
    • /
    • 제27권7호
    • /
    • pp.462-467
    • /
    • 2014
  • In this paper, we studied the magnetic composite sheets for electromagnetic wave noise absorber of quasi-microwave band by using soft magnetic FeSiCr and Fe50Ni flakes with the thickness of about $1{\mu}m$ and polymer. The magnetic hysteresis curve including saturation magnetization and residual magnetization and the complex permeability characteristics of the composite sheets were investigated to clarify the mixing effect on electromagnetic wave absorption properties. The saturation magnetization was decreased about 10% while the residual magnetization was increased about 15% and the real parts of complex permeability at below 500 MHz were increased 0.6~4 while those values at above 500 MHz were decreased 0.4~2.5 according to the change of contents of FeSiCr and Fe50Ni powders. As a result, the reflection loss can be moved to the lower frequency from 2~3 GHz to 1~1.5 GHz as the contents of Fe50Ni flaky powder into FeSiCr flaky powder was increased up to 50%.

Fe-Si-Cr 분말합금의 열처리 효과 (Effects of Annealing of Gas-atomized Fe-Si-Cr Powder)

  • 장평우
    • 한국자기학회지
    • /
    • 제26권1호
    • /
    • pp.7-12
    • /
    • 2016
  • 전기비저항이 높아 1 MHz 이상 고주파용 코어재료로 적합한 Fe-9%Si-2%Cr 합금분말의 열처리 온도에 따른 투자율 거동과 규칙-비규칙 전이에 대해 연구하였다. 분무과정에서 B2 규칙상의 생성이 억제되지 않았으며, $550^{\circ}C$ 이상에서 열처리 했을 경우 $DO_3$ 상의 회절선을 검출할 수 있었다. 열처리 온도가 증가할수록 격자상수와 보자력은 감소하였으나 $450^{\circ}C$에서 보자력의 갑작스런 큰 증가가 있었다. $150^{\circ}C$의 비교적 낮은 열처리 온도에서 가장 높은 투자율을 나타내었고, 이후 열처리 온도가 증가할수록 투자율은 감소하였다. 이상의 거동은 $DO_3$ 규칙상의 생성과 이에 따른 비저항의 변화로 설명할 수 있었다.

Fabrication and Magnetic Properties of A New Fe-based Amorphous Compound Powder Cores

  • Xiangyue, Wang;Feng, Guo;Caowei, Lu;Zhichao, Lu;Deren, Li;Shaoxiong, Zhou
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.318-321
    • /
    • 2011
  • A new Fe-based amorphous compound powder was prepared from Fe-Si-B amorphous powder by crushing amorphous ribbons as the first magnetic component and Fe-Cr-Mo metallic glassy powder by water atomization as the second magnetic component. Subsequently by adding organic and inorganic binders to the compound powder and cold pressing, the new Fe-based amorphous compound powder cores were fabricated. This new Fe-based amorphous compound powder cores combine the superior DC-Bias properties and the excellent core loss. The core loss of 500 kW/$m^3$ at $B_m$ = 0.1T and f = 100 kHz was obtained When the mass ratio of FeSiB/FeCrMo equals 3:2, and meanwhile the DC-bias properties of the new Fe-based amorphous compound powder cores just decreased by 10% compared with that of the FeSiB powder cores. In addition, with the increasing of the content of the FeCrMo metallic glassy powder, the core loss tends to decrease.

FeSiCr 박편/폴리머 복합시트의 전자파 흡수 특성에 미치는 자성분말 두께의 영향 (Effects of Magnetic Powder Thickness on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets)

  • 김주범;노태환
    • 대한금속재료학회지
    • /
    • 제47권12호
    • /
    • pp.866-872
    • /
    • 2009
  • The effects of magnetic powder thickness on electromagnetic wave absorption characteristics in Fe-6.5Si-0.9Cr (wt%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The atomized FeSiCr powders were milled by using attritor for 12, 24, and 36 h, powder thickness changed from $40{\mu}m$ to $3{\mu}m$ upon 36 h milling. The composite sheet, including thinned magnetic flakes, exhibited higher power loss in the GHz frequency range as compared with the sheets having thick flakes. Moreover, both the complex permeability and the loss factor increased with the decrease in thickness of the alloy flakes. Therefore, the enhanced power loss property of the sheets containing thin alloy flakes was attributed to the flakes of high complex permeability, especially their imaginary part. Additionally, the complex permittivity was also increased with the reduction of flake thickness, and this behavior was considered to be helpful for improvement of the electromagnetic wave absorption characteristics in the composite sheets, including thin alloy flakes.

Fe-l7Cr-2M(M=Si, Nb, Mo)합금 분말 소결체의 교류 자기 특성 (Magnetic Properties in Alternating Magnetic Field for the Sintered Ee-l7Cr-2M(M=Si, Nb, Mo) Alloys)

  • 김정곤;김택기;오용수
    • 한국자기학회지
    • /
    • 제10권6호
    • /
    • pp.269-273
    • /
    • 2000
  • Fe-l7Cr-2M(M=Si, Nb, Mo)합금분말을 Electrode Rotating Atomizer로 제조한 후 성형하여 소결한 시편의 첨가원소, 성형 압력 및 소결온도 에 따른 교류자기특성의 변화를 체계적으로 조사하였다 제조된 Fe-l7Cr-2M(M=Si, Nb, Mo) 합금분말의 형상은 구형이며, 포화자화값은 Mo와 Nb을 첨가한 Fe-l7Cr-2Mo과 Fe-l7Cr-Nb의 경우 약 155 emu/g로 Si을 첨가한 경우보다 크다. 성형압력 12 ton/$cm^2$, 소결온도 1200 $^{\circ}C$에서 제조된 Fe-l7Cr-2M(M=Si, Nb, Mo)합금분말 소결체의 진폭비 투자율은 주파수, f=1 kHz에서 3~5 Oe의 인가자장 범위에서 가장 크다. 전력손실은 인가자장 H$_{a}$ =5 Oe, 주파수 f=1 kHz에서 Fe-l7Cr-2Nb 경우 40 mW/cc로 Si이나 Mo를 첨가한 경우 보다 약 1/2값을 나타낸다.

  • PDF

FeSi-(Cu, Ni) 결정질 합금 및 FeCrSiBC 비정질 합금 분말코아의 성형성 및 자기적 특성에 미치는 인산염처리 효과 (Effects of the phosphate coating for forming ability and magnetic properties of FeSi-(Cu, Ni) crystalline alloy and FeCrSiBC amorphous alloy powder cores)

  • 장대호;노태환;이태경;최광보;김윤배;김광윤
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2004년도 동계학술연구발표회 논문개요집
    • /
    • pp.91-92
    • /
    • 2004
  • PDF

급속응고 Al-20wt%Si-5wt%Fe 합금분말 압출재의 강도에 관한 연구 (Fabrication of Rapidly Solidified Al-20wt%Si-5wt%Fe Alloy Powder and Mechanical Properties of its Extrudates)

  • 김택수
    • 한국분말재료학회지
    • /
    • 제1권1호
    • /
    • pp.66-71
    • /
    • 1994
  • Optical microstructures and mechanical properties of Na gas atomized Al-20Si-5Fe alloying powder and its hot extrudates were studied on 3 different types of powder size distribution. This powder showed the size distribution of 10~210 $\mu\textrm{m}$. Also the microstructures of $\alpha$-Al, primary and eutectic Si and needle shaped intermetallic compounds were observed by optical microscope. These needle shaped intermetallic compounds were identified as ${\delta}Al_4FeSi_2$- by XRD and EDX analysis. The ultimate tensile strength(UTS) of these alloy extrudates was increased from 324 to 390 MPa with decreasing powder size range from 120~210 $\mu\textrm{m}$ to 10~64 $\mu\textrm{m}$. A value of Micro-vic-kers hardness was simillar to the result of UTS. These extrudates showed better wear resistance than those of Al-20Si-2X(X : Ni, Cr, Zr), although they are insensitive to the size distribution. These results indicate that the presentation of ${\delta}Al_4FeSi_2$ intermetallic compounds contributed to the wear resistance improvement.

  • PDF

Preparation of gas-atomized Fe-based alloy powders and HVOF sprayed coatings

  • Chau, Joseph Lik Hang;Pan, Alfred I-Tsung;Yang, Chih-Chao
    • Advances in materials Research
    • /
    • 제6권4호
    • /
    • pp.343-348
    • /
    • 2017
  • High-pressure gas atomization was employed to prepare the Fe-based $Fe_{50}Cr_{24}Mo_{21}Si_2B_3$ alloy powder. The effect of flow rate of atomizing gas on the median powder diameter was studied. The results show that the powder size decreased with increasing the flow rate of atomizing gas. Fe-based alloy coatings with amorphous phase fraction was then prepared by high velocity oxygen fuel spraying (HVOF) of gas atomized $Fe_{50}Cr_{24}Mo_{21}Si_2B_3$ powder. Microstructural studies show that the coatings present dense layered structure and low porosity of 0.17% in about $200{\mu}m$ thickness. The Fe-based alloy coating exhibits an average hardness of about 1230 HV. Our results show that the HVOF process results in dense and well-bonded coatings, making it attractive for protective coatings applications.

FeSiCr 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 자성분말 입도의 영향 (Effects of Magnetic Powder Size on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets)

  • 노태환;김주범
    • 대한금속재료학회지
    • /
    • 제46권1호
    • /
    • pp.44-51
    • /
    • 2008
  • The effects of magnetic powder size on electromagnetic wave absorption characteristics in Fe-6.5Si-0.9Cr(wt%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The composite sheet including small magnetic flakes with the size less than $26{\mu}m$ exhibited high power loss in the GHz frequency range as compared with the sheets having large alloy flakes of $45{\sim}75{\mu}m$. Moreover, both the complex permeability and the loss factor increased with the decrease in size of the alloy flakes. The large power loss of the sheets containing small magnetic flakes was attributed to the high complex permeability, especially their imaginary part. The high complex permeability of the sheets composed of small flakes was considered to be due to the highly thin shape of the flakes inducing low eddy-current loss.