• Title/Summary/Keyword: Fe-Si nano powder

Search Result 43, Processing Time 0.024 seconds

Magnetic Properties of Amorphous FeSiB and Nanocrystalline $Fe_{73}Si_{16}B_7Nb_3Cu_1$ Soft Magnetic Sheets

  • Cho, H.J.;Cho, E.K.;Song, Y.S.;Kwon, S.K.;Sohn, K.Y.;Park, W.W.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.786-787
    • /
    • 2006
  • The magnetic inductance of nanocrystalline $Fe_{73}Si_{16}B_7Nb_3Cu_1$ and an amorphous FeSiB powder sheet has been investigated to identify RFID performance. The powder was mixed with binder and solvent and tape-casted to form films. Results show annealing significantly influenced on the inductance of the material. The surface oxidation of the particles was the main reason for the reduced inductance. The maximum inductance of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy was about $88{\mu}H$ at 17.4 MHz, about 65% greater compared to the FeSiB alloy. The higher inductance in the nanocrystalline alloy indicates it may be used as a potential replacement of current RFID materials.

  • PDF

Dynamic Compaction of Mechanochemically Alloyed Fe-Si Nano Powders by Magnetic Pulsed Pressure (기계화학적 합금화된 나노 Fe-6.5Si 분말의 자기 펄스압에 의한 동적성형)

  • Lee, G.-H.;Rhee, C.-K.;Kim, W.-W.;Yun, J.-W.;Lee, K.-S.
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • Nano Fe-6.5wt%Si powders have been synthesized by mechano-chemical process (MCP) for an application of soft magnetic core. Owing to hard and brittle characteristics of Fe-6.5Si nano powders having large surface area, it is very difficult to reach high density more than 70% of theoretical density (~7.4 g/$cm_3$) by cold compaction. To overcome such problem a magnetic pulsed compaction (MPC), which is one of dynamic compaction techniques, was applied. The green density was achieved about 78% (~5.8 g/$cm_3$) by MPC at room temperature.

Consolidation of p-type Fe(Mn)Si2 Thermoelectric Powder and Microstructure (P형 Fe(Mn)Si2 열전재료 분말의 성형 및 미세조직)

  • Shim, J.S.;Hong, S.J.;Chun, B.S.
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.345-351
    • /
    • 2008
  • The effects of the dopant (Mn) ratio on the microstructure and thermoelectric properties of $FeSi_2$ alloy were studied in this research. The alloy was fabricated by a combination process of ball milling and high pressure pressing. Structural behavior of the sintered bulks were systematically investigated by XRD, SEM, and optical microscopy. With increasing dopan (Mn) ratio, the density and ${\varepsilon}-FeSi$ phase of the sintered bulks increased and maximum density of 94% was obtained in the 0.07% Mn-doped alloy. The sintered bulks showed fine microstructure of ${\alpha}-Fe_{2}Si_{5}$, ${\varepsilon}-FeSi$ and ${\beta}-FeSi_2$ phase. The semiconducting phase of ${\beta}-FeSi_2$ was transformed from ${\alpha}-Fe_{2}Si_{5}+{\varepsilon}-FeSi$ phase by annealing.

Electromagnetic Wave Absorption Properties of Fe73Si16B7Nb3Cu1-Based Nanocrystalline Soft Magnetic Powder Composite Mixed with Charcoal Powder (나노결정 Fe73Si16B7Nb3Cu1 연자성분말과 숯분말 혼합 복합성형체의 전자파흡수 특성)

  • Kim, Sun-I;Kim, Mi-Rae;Sohn, Keun-Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.291-295
    • /
    • 2009
  • The electromagnetic wave absorption sheets were fabricated by mixing of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline soft magnetic powder, charcoal powder and polymer based binder. The complex permittivity, complex permeability, and scattering parameter have been measured using a network analyzer in the frequency range of 10 MHz$\sim$10 GHz. The results showed that complex permittivity of sheets was largely dependent on the frequency and the amount of charcoal powder : The permittivity was improved up to 100 MHz, however the value was decreased above 1 GHz. The power loss of electromagnetic wave absorption data showed almost the same tendency as the results of complex permittivity. However, the complex permeability was not largely affected by the frequency, and the values were decreased with the addition of charcoal powder. Based on the results, it can be summarized that the addition of charcoal powder was very effective to improve the EM wave absorption in the frequency range of 10 MHz$\sim$1 GHz.

Effect of Ca and Al Additions on the Magnetic Properties of Nanocrytalline Fe-Si-B-Nb-Cu Alloy Powder Cores

  • Moon, Sun Gyu;Kim, Ji Seung;Sohn, Keun Yong;Park, Won-Wook
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2016
  • The Fe-Si-B-Nb-Cu alloys containing Ca and Al were rapidly solidified to thin ribbons by melt-spinning. The ribbons were ball-milled to make powders, and then mixed with 1 wt.% water glass and 1.5 wt.% lubricant. The mixed powders were burn-off, and then compacted to form toroidal-shaped cores, which were heat treated to crystallize the nano-grain structure and to remove residual stress of material. The characteristics of the powder cores were analyzed using a differential scanning calorimetry (DSC) and a B-H meter. The microstructures were observed using transmission electron microscope (TEM). The optimized soft magnetic properties (${\mu}_i$ and $P_{cv}$) of the powder cores were obtained from the Ca and Al containing alloys after annealing at $530^{\circ}C$ for 1 h. The core loss of Fe-Si-B-Nb-Cu-based powder cores was reduced by the addition of Ca element, and the initial permeability increased due to the addition of Al element.

Sintering behavior of Fe-(Mo-Mn-P)-xSi alloys according to the Green Density (Fe-(Mo-Mn-P)-xSi계 합금의 성형밀도에 따른 소결거동)

  • Jung, Woo-Young;Ok, Jin-Uk;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.400-405
    • /
    • 2017
  • The addition of a large amount of alloying elements reduces the compactibility and increases the compacting pressure, thereby shortening the life of the compacting die and increasing the process cost of commercial PM steel. In this study, the characteristic changes of Fe-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P alloys are investigated according to the Si contents to replace the expensive elements, such as Ni. All compacts with different Si contents are fabricated with the same green densities of 7.0 and $7.2g/cm^3$. The transverse rupture strength (TRS) and sintered density are measured using the specimens obtained through the sintering process. The sintered density tends to decrease, whereas the TRS increases as the Si content increases. The TRS of the sintered specimen compacted with $7.2g/cm^3$ is twice as high as that compacted with $7.0g/cm^3$.

Briquetting of Waste Silicon Carbide Obtained from Silicon Wafer Sludges (실리콘 wafer sludge로부터 얻어진 SiC의 단광화 기술)

  • Koo, Seong Mo;Yoon, Su Jong;Kim, Hye Sung
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.43-48
    • /
    • 2016
  • Waste SiC powders obtained from silicon wafer sludge have very low density and a narrow particle size distribution of $10-20{\mu}m$. A scarce yield of C and Si is expected when SiC powders are incorporated into the Fe melt without briquetting. Here, the briquetting variables of the SiC powders are studied as a function of the sintering temperature, pressure, and type and contents of the binders to improve the yield. It is experimentally confirmed that Si and C from the sintered briquette can be incorporated effectively into the Fe melt when the waste SiC powders milled for 30 min with 20 wt.% Fe binder are sintered at $1100^{\circ}C$ upon compaction using a pressure of 250 MPa. XRF-WDS analysis shows that an yield of about 90% is obtained when the SiC briquette is kept in the Fe melt at $1650^{\circ}C$ for more than 1 h.

The Characteristic Changes of Electromagnetic Wave Absorption in Fe-based Nanocrystalline P/M Sheets Mixed with Ball-Milled Carbon Nanotubes (Fe계 나노결정립 분말 시트에 첨가된 CNT의 볼밀 공정에 따른 전자파 흡수 특성 변화)

  • Kim, Sun-I;Kim, Mi-Rae;Sohn, Keun-Yong;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.424-430
    • /
    • 2009
  • Electromagnetic wave energies are consumed in the form of thermal energy, which is mainly caused by magnetic loss, dielectric loss and conductive loss. In this study, CNT was added to the nanocrystalline soft magnetic materials inducing a high magnetic loss, in order to improve the dielectric loss of the EM wave absorption sheet. Generally, the aspect ratio and the dispersion state of CNT can be changed by the pre-ball milling process, which affects the absorbing properties. After the various ball-milling processes, 1wt% of CNTs were mixed with the nanocrystalline $Fe_{73}Si_{16}B_7Nb_{3}Cu_1$ base powder, and then further processed to make EM absorption sheets. As a result, the addition of CNT to Fe-based nanocrystalline materials improved the absorption properties. However, the increase of ball-milling time for more than 1h was not desirable for the powder mixture, because the ballmilling caused the shortening of CNT length and the agglomeration of the CNT flakes.

Mechanical Properties of Fe-P-(Mo,Mn) Sintered Alloy Related with Si Contents (Fe-P-(Mo,Mn)계 소결분말 합금에서 Si 첨가에 따른 기계적 특성 변화에 대한 연구)

  • Jung, Woo-Young;Park, Dong-Kyu;Ko, Byung-Hyun;Park, Jin-Woo;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.397-401
    • /
    • 2016
  • A lean alloy is defined as a low alloy steel with a minimum amount of the alloying element that maintains the characteristics of the sintered alloy. It is well known that the addition of elements such as Cr, P, Si, or Mn improves the mechanical characteristics of the alloy, but decreases the sinterability. The mother alloy is used to avoid an oxidation reaction with the alloying elements of Cr, P, Si or Mn. The purpose of this study is to determine the change in the mechanical properties of Fe-P-Mo and Fe-P-Mn alloys as a result of the addition of Si. In this article, the Fe-P-Mo and Fe-P-Mn alloys to which Si is added are compacted at $7.0g/cm^3$ and then sintered in $H_2-N_2$ at $1120^{\circ}C$. The P around the macropores and large grains reduces due to the formation of $SiO_2$ as the Si content increases. This is caused by the increase in strength owing to reducing intergranular fracture by suppressing the reaction with oxygen.

Effect of Crystallization Treatment on the Magnetic Properties of Amorphous Strips Based on Co-Fe-Ni-B-Si-Cr Containing Nitrogen

  • Cho H.J.;Kwon H.T.;Ryu H.H.;Sohn K.Y.;You B.S.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.285-289
    • /
    • 2006
  • Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of $300^{\circ}C{\sim}540^{\circ}C$ for up to 30 minutes in an inert gas $(N_2)$ atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at $540^{\circ}C$ showed that the grain size of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.