• Title/Summary/Keyword: Fe-Si alloy

Search Result 412, Processing Time 0.022 seconds

Effect of EB-PVD Coated Si/HA Film Thickness on Surface Characteristics of Ti-35Nb-10Zr Alloy

  • Jeong, Yong-Hoon;Eun, Sang-Won;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.213-213
    • /
    • 2012
  • In this study, effect of EB-PVD coated Si/HA film thickness on surface characteristics of Ti-35Nb-10Zr alloy was investigated. The Ti-35Nb-10Zr alloy was fabricated by arc melting method. The Si/HA layers were coated with 0.8 wt.% of Si in pure HA by EB-PVD method. The coating thickness was consisted with 100 - 300 nm for each group, the surface characteristics was analyzed by FE-SEM, EDS, XRD, XRF and corrosion test. The Si/HA coating layer was well deposited on the alloy surface by EB-PVD, the thickness was correlative factor with HA peaks and corrosion resistance value.

  • PDF

Frequency Dependence of the Magnetoimpedance Effect in Amorphous Fe_{78}B_{13}Si_9 Alloy (비정질 금속 $Fe_{78}\;B_{13}\;Si_9$의 주파수에 따른 자기 임피던스 효과)

  • 김용국;김택기;이희복
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • The frequency dependence of magnetoimpedance (MI) effect in amorphous $Fe_{78}B_{13}Si_9$ alloy has been obtained. Magnetoimpedance (MI) effect is a high-frequency phenomenon, which describes the changes of impedance in any ferromagnetic sample, when a magnetic field is applied on it. MIR (Magnetoimpedance ratios) is defined as $\Delta$ Z/Z ≡ [Z (0) / Z ($H_s$)]-1 where $H_s$ is the saturating field along the long side of the sample, The MIR of the samples annealed in vacuum has been decreased normally except that the sample annealed at 5 MHz has been reached as much as 58%.

  • PDF

Effect of Heat Treatment on Microstructures and Magnetic Properties of Rapidly Solidified Fe-6.5wt % Si sheet (급속응고된 Fe-6.5wt% Si 강판의 미세조직과 자기적 특성에 미치는 열처리의 영향)

  • Hwang, D.H.;Lee, K.H.;Lee, T.H.;Koo, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.2
    • /
    • pp.149-154
    • /
    • 1995
  • The alloying of 6.5wt % Silicon in iron decreases the magnetization and the anisotropy and minimizes the iron loss noticeably. But it is very difficult to make thin sheets because of its poor ductility which is due to an ordering reaction (body centered cubic to CsCI type crystal structure). However the ordering reaction can be suppressed by rapid solidification method. The cooling rate of rapidly solidified Fe-6.5wt % Si alloy is about $10^3K/s$ and rapidly solidified structure are fine structure, cellular structure, dendrite and equiaxed grain from surface. The precipitates of $DO_3$ Phase emerges on $B_2$ matrix and the coercive force was 0.51 Oe (50cycle, 15KGauss) in Fe-6.5wt% Si alloy which was processed by heat treatment of $1150^{\circ}C$ for 1hr in high vacuum.

  • PDF

Thermodynamic Interactions Among Carbon, Silicon and Iron in Carbon Saturated Manganese Melts (탄소 포화 Mn 합금 용액내 C, Si 및 Fe 사이의 열역학적 상호작용)

  • Paek, Min-Kyu;Lee, Won-Kyu;Jin, Jinan;Jang, Jung-Mock;Pak, Jong-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • Thermodynamics of carbon in manganese alloy melts is important in manufacturing low carbon ferromanganese and silico-manganese alloys. In order to predict the carbon solubility in liquid $Mn-Si-Fe-C_{sat}$ alloys as a function of melt composition and temperature, thermodynamic interactions among carbon, silicon and iron in carbon saturated liquid manganese should be known. In the present study, the effects of silicon and iron on the carbon solubility in Mn-Si, Mn-Fe and Mn-Si-Fe melts were measured in the temperature range from 1673 to 1773 K. The carbon solubility decreases significantly as silicon and iron contents increase in liquid manganese alloy. The interaction parameters among carbon, silicon and iron in carbon saturated liquid manganese were determined from the carbon solubility data and the Lupis' relation for the interaction coefficient at constant activity.

Electronic Structures of half-metallic phase of ternary Fe_2TX (T = 3d transition metal and X = Al, Si) (절반금속 Fe_2TX 화합물의 전자구조 연구 (T = 3d 전이금속; X = Al, Si))

  • Park, Jin-Ho;Kwon, Se-Kyun;Byung ll Min
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.584-584
    • /
    • 2000
  • Electronic structures of ordered Fe$_3X (X = Al, Si), and their derivative ternary alloys of Fe_2TX (T = 3d transition metal) have been investigated by using the linearized muffin-tin orbital (LMTO) band method. The role of the coupling between substituted transition metal and its neighbors is investigated by calculating the magnetic moments and local density of states (LDOS). It is shown that it is essential to include the coupling beyond nearest neighbors in obtaining the magnetic moment of Fe alloy. The preferential sites of T impurities in Fe_3X are determined from the total energy calculations. The derivative ternary alloys of Fe_2TX have characteristic electronic structures of semi-metal for Fe_2VAI and (nearly) half-metal for Fe_2TAI (T = Cr, Mn) and Fe_2TSi (T = V, Cr, Mn)

  • PDF

Effects of Powder Size and Ball-milling Time on the Magnetic Properties of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ Nanocrystalline Alloy Powder Cores ($Fe_{73}Si_{16}B_7Nb_3Cu_1$ 나노결정합금 분말코아의 자기적 특성에 미치는 분말입도 및 볼밀링 시간의 영향)

  • Mun, Byeong-Gi;Gang, Seong-Chan;Park, Won-Uk;Son, Geun-Yong
    • 연구논문집
    • /
    • s.34
    • /
    • pp.121-129
    • /
    • 2004
  • The influence of powder size and ball-milling time on the magnetic properties of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline alloy powder was investigated. Flake-shaped powders were produced by pulverizing the ribbons annealed at $550^\circC$ for 1 hour. The powders were classified and consolidated into core shapes at a pressure of 18ton/$cm^2$. The initial permeability at 100kHz of the inductor core produced using $53-75\mum$ powders showed the highest value although its consolidated density showed the lowest one. The reason for the result is due to the cracking of the particles larger than $75\mum$ during the consolidation process. The ball-milling of powders for 2-4 hours improved the consolidation density and the initial permeability of the cores. The intrinsic coercivity of the powder decreased as well, resulting from the stress relief of the powder by a short-time milling.

  • PDF

Microstructure and Wear Behaviour of Rapidly Solidified Al-20Si-5Fe-zPb(x=2, 4, 6wt.%) Alloys (급속응고 Al-20Si-5Fe-xPb(x=2, 4, 6 wt.%) 합금의 미세조직과 마모거동)

  • 김택수
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.96-102
    • /
    • 1999
  • The effect of Pb addition on microstructure and wear resistance was studied in rapidly solidified Al-20Si-5Fe-xPb(x=2, 4, 6 wt.%) alloys. The R/S Al-20Si-5Fe-xPb (x=2, 4, 6 wt.%) alloys showed a fine and homogeneous microstructure and an improved wear property compared with Al-20Si-5Fe alloy, while no significant change in UTS (Ultimate Tensile Strength) was shown. Contribution of the dispersoids on the wear property was discussed by showing the plastic deformation layers formed during wear track.

  • PDF

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

Effects of Alloying Elements(C, Si) and Hot-Rolling on Damping Capacity and Mechanical Properties of Fe-17%Mn Alloys (Fe-17%Mn 합금의 진동감쇠능과 기계적 성질에 미치는 합금원소(C, Si) 및 열간압연의 영향)

  • Kim, J.C.;Han, D.W.;Back, J.H.;Kim, T.H.;Baik, S.H.;Lee, Y.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.2
    • /
    • pp.99-104
    • /
    • 2005
  • In this study, the effects of C and Si on damping capacity and mechanical properties of as-cast and as-rolled Fe-17%Mn alloys were investigated as a basic study for the purpose of the commercialization of the alloy. The $M_s$ temperature of ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation in Fe-17%Mn alloy was decreased with increasing C and Si contents, resulting in the less volume fraction of ${\varepsilon}$ martensite. The damping capacity was also decreased with increasing alloying content because of less ${\varepsilon}$ amount and the reduction in mobility of the damping sources such as the stacking fault boundaries and ${\gamma}/{\varepsilon}$ interfaces due to the pinning effect by alloying elements. The mechanical properties of as-rolled alloys were superior to those of as-cast alloys probably because of finer ${\gamma}$ grains, larger amount of ${\varepsilon}$ martensite, and chemical homogeneity.