• Title/Summary/Keyword: Fe-Mo co-doping

Search Result 4, Processing Time 0.02 seconds

Effects of Mo co-doping into Fe doped β-Ni(OH)2 microcrystals for oxygen evolution reactions (Fe-doped β-Ni(OH)2의 산소발생반응 증가를 위한 Mo의 동시도핑효과)

  • Je Hong Park;Si Beom Yu;Tae Kwang An;Byeong Jun Kim;Jeong Ho Ryu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.30-35
    • /
    • 2024
  • In order to improve the efficiency of the water splitting system for hydrogen production, the high overvoltage in the electrochemical reaction caused by the catalyst in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) must be reduced. Among them, transition metal-based compounds are attracting attention as catalyst materials that can replace precious metals such as platinum that are currently used. In this study, nickel foam, an inexpensive metal porous material, was used as a support, and Fe-doped β-Ni(OH)2 microcrystals were synthesized through a hydrothermal synthesis process. In addition, in order to improve OER properties, changes in the shape, crystal structure, and water splitting characteristics of Fe-Mo co-doped β-Ni(OH)2 microcrystals synthesized by co-doping with Mo were observed. The changes in the shape, crystal structure, and applicability as a catalyst for water splitting were examined.

유기태양전지와 유기발광다이오드에 적용 In-Mo-O 투명 전극의 특성 연구

  • Sin, Yong-Hui;Na, Seok-In;Kim, Jang-Ju;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.535-536
    • /
    • 2013
  • 본 연구에서는 DC/RF co-sputtering공법을 통해 제작한 In-Mo-O 투명 Mo doping 농도 및 열처리 온도에 따른 전기적, 광학적, 구조적 특성을 분석하고, 최적화된 In-Mo-O 투명전극을 유기태양전지(OPVs)와 유기발광다이오드(OLED)에 적용하여 그 가능성을 평가하였다. Mo doping 농도는 co-sputtering 공정 중 MoO3에 인가되는 radio-frequency (RF) power를 변화시켜 조절되었으며, 투명전극의 광학적 특성 및 전기적 특성 향상을 위해 성막 공정 후 급속 열처리 공정을 온도 별로 진행하였다. In-Mo-O 투명 전극은 Mo 도핑 농도에 영향을 받음을 확인할 수 있었고, 최적화된 Mo doping 파워에서 성막한 In-Mo-O 박막은 급속 열처리 공정 후 면저항 24.57 Ohm/square, 투과도 81.57% (400~1,200 nm wavelength)를 나타내었다. Bulk hetero-junction 기반의 고효율 유기태양전지와 유기발광다이오드 적용하기 위해 본 연구에서 제작된 IMO 투명전극의 구조적 특성, 결정성 및 표면특성은 x-ray diffraction (XRD), atomic force microscopy(AFM), field effect scanning electron microscopy (FE-SEM), High-resolution transmission electron microscopy (HRTEM) 분석을 통해 진행하였다. In-Mo-O 투명 전극상에 제작된 OLEDs와 OPV는 reference ITO 전극에 제작된 OLEDs/OPV와 비교할 때 유사하거나 향상된 특성을 나타내었으며 이는 In-Mo-O 박막이 OLED/OPV용 투명 전극으로 적용이 가능함을 말해준다.

  • PDF

Effect of Mo-doped LiFePO4 Positive Electrode Material for Lithium Batteries

  • Oh, Seung-Min;Sun, Yang-Kook
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.172-177
    • /
    • 2012
  • Mo-doped $LiFePO_4$ was synthesized via co-precipitation method using sucrose as the carbon source. Structure, surface morphology, and the electrochemical properties of the synthesized olivine compounds were investigated using Rietveld refinement of X-ray diffraction data (XRD), scanning electron microscopy (SEM), and electrochemical charge-ischarge tests. Spherical morphology with the particle size of ${\sim}8{\mu}m$ authenticated the enhanced tap density and volumetric energy density of the synthesized materials. Charge-discharge behavior of $LiFePO_4$ and Mo-doped $LiFePO_4$ cells demonstrated a specific capacity of 130 and 145 mAh $g^{-1}$, respectively. Mo-doped $LiFePO_4$ cells exhibited an excellent discharge capacity at 96 mAh $g^{-1}$ at 7 C-rate.

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.