• Title/Summary/Keyword: Fe-Mn

Search Result 2,718, Processing Time 0.032 seconds

Annealing Effect on Exchange Bias in NiFe/FeMn/CoFe Trilayer Thin Films

  • Kim, Ki-Yeon;Choi, Hyeok-Cheol;You, Chun-Yeol;Lee, Jeong-Soo
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.97-101
    • /
    • 2008
  • We investigated the exchange bias fields at the NiFe/FeMn and FeMn/CoFe interfaces in 18.9-nm NiFe/15.0-nm FeMn/17.6-nm CoFe trilayer thin films as the annealing temperature was varied from room temperature to $250^{\circ}C$ in a vacuum for 1 hour in a magnetic field of 150 Oe. Interestingly, magnetic hysteresis (M-H) measurements showed that NiFe/FeMn/CoFe trilayer thin films exhibited a completely contrasting variation of the exchange bias fields at both the NiFe/FeMn and FeMn/CoFe interfaces with annealing temperatures. High-angle X-ray diffraction (XRD) measurements indicated the absence of any discernible effect of thermal treatment on the NiFe(111) and FeMn(111) peaks. The compositional depth profile obtained from X-ray photoelectron spectroscopy (XPS) results presented the asymmetric compositional depth profiles of the Mn and Fe atoms throughout the FeMn layer. We contend that this asymmetric compositional depth profile and the preferential Mn diffusion into the NiFe layer, compared to that into the CoFe layer, are conclusive experimental evidence of the contrasting variation of the exchange bias fields at two interfaces having a common polycrystalline FeMn(111) layer.

The Effects of Mn and Cr Additions on the Microstructure of A356 Alloys Containing Impure Fe (불순 Fe를 함유한 A356 주조합금에서 미세조직 형성에 관한 Mn과 Cr의 효과)

  • Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.128-133
    • /
    • 2005
  • The effects of Mn and Cr on the crystallization behaviors of Fe-bearing intennetallics in A356 alloy were studied. Coarse and acicular ${\beta}-Al_{5}$FeSi phase in A356-0.20wt.%Fe alloy was modified into small ${\alpha}$-Al(Fe,Mn)Si and ${\alpha}$-Al(Fe,Cr)Si phases in response to Mn and Cr addition, respectively. Increasing of Mn addition amount elevates the crystallizing temperature of ${\alpha}$-Al(Fe,Mn)Si and the Mn/Fe ratio in the ${\alpha}$-Al(Fe,Mn)Si. Cr is more effective to modify ${\beta}-Al_{5}$FeSi in comparison with Mn. ${\alpha}$-Al(Fe,Mn)Si phase had BCC/SC dual structure.

A study on the exchange anisotropy of Ni-Fe/Co-Fe/Mn-Ir/Cu/buffer/Si multialyers (Ni-Fe/Co-Fe/Mn-Ir/Cu/buffer/Si 다층박막의 교환이방성에 관한 연구)

  • 윤성용;노재철;전동민;임흥순;서수정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • We studied the exchange anisotropy of Ni-Fe/Co-Fe/Mn-Ir/Cu/buffer/Si multilayers using D.C magnetron sputtering technique. Generally, Ni-Fe/Mn-Ir/buffer(Cu)/Si multilayers cannot pin the ferromagnetic layer for the lower exchange biased field. We got $H_{ex}$ ex/ increased by two times, after using Cu/Ta as buffer layer to get larger grain size of Mn-Ir layer and inserting very thin Co-Fe layer between the Ni-Fe layer and the Mn-Ir layer to get improved grain-to-grain epitaxy relation at the interface between Ni-Fe layer and Mn-Ir layer. The variation of $H_{ex}$ by thickness of Mn-Ir layer in ferromagnete/Mn-Ir/buffer/Si multilayers is different to that in Mn-Ir/ferromagnete/buffer/Si multilayers, because the volume distribution of grain size of Mn-Ir layer and the exchange energy at the interface between the Mn-Ir and the ferromagnetic layers is different for stacking sequence.

  • PDF

Exchange Coupling Field and Thermal Stability of Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 Multilayer Depending on Mn Content (Ni80Fe20/[Ir22/Mn78-Mn]/Co75Fe25 다층박막에서 Mn 함유량에 의존하는 교환결합력과 열적안정성)

  • Kim, B.K.;Lee, J.Y.;Kim, S.S.;Hwang, D.G.;Lee, S.S.;Hwang, J.Y.;Kim, M.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.5
    • /
    • pp.187-192
    • /
    • 2003
  • The magnetic and thermal properties of NiFe/[IrMn-Mn]/CoFe with Mn additions have been studied. As-deposited CoFe pinned layers with [IrMn-Mn]layer had dominantly larger exchange biasing field ( $H_{ex}$) and blocking temperature ( $T_{b}$) than those with pure I $r_{22}$M $n_{78}$ used. The $H_{ex}$ and $T_{b}$ improved with 76.8-78.1 vol% Mn, but those of the NiFe/IrMn/CoFe dropped considerably with more addition of 0.6 vol % Mn. The average x-ray diffraction peak ratios of fcc [(111)CoFe, NiFe]/(111)IrM $n_3$ textures for the Mn inserted total vol of 75.5, 77.5, and 79.3% were about 1.4, 0.8, and 0.6, respectively. For the sample without Mn inserted layer, the $H_{ex}$ between IrMn and CoFe layers was almost zero, but it increased to 100 Oe after annealing of 250 $^{\circ}C$. For as-grown two multilayers samples with ultra-thin Mn layers of 77.5 and 78.7 vol %, the $H_{ex}$s were 259 and 150 Oe, respectively. In case of IrMn with 77.5 vol% Mn, the $H_{ex}$ was increased up to 475 Oe at 350 $^{\circ}C$ but decreased to 200 Oe at 450 $^{\circ}C$, respectively. The magnetic properties and thermal stabilities of NiFe/[IrMn-Mn]/CoFe multilayer were enhanced with Mn additions. In applications where higher $H_{ex}$ and $T_{b}$ are required, proper contents of Mn can be used. be used. used.

Enhancement of Exchange Coupling Field and Thermal Stability by an Ultra-thin Mn Inserted layer on NiFe/[FeMn/Mn]80/NiFe Multilayers (NiFe/[FeMn/Mn]80/NiFe 다층박막에서 극-초박막 Mn 삽입에 의한 교환결합세기와 열적 안정성 향상)

  • Kim, Bo-Kyung;Lee, Jin-Yong;Ham, Sang-Hee;Lee, Sang-Suk;Hwang, Do-Guwn
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.53-58
    • /
    • 2003
  • Annealing effects of exchange bias fields ($H_{2ex}$(top), $H_{lex}$ (bottom)) on composite type NiFe/[FeMn/Mn]$_{80}$/NiFe multilayers have been studied. Three samples with ultra-thin Mn inserted layers on glass/Ta(50 $\AA$)/NiFe(150 $\AA$)/[F $e_{53}$M $n_{47}$(1.25 $\AA$)/Mn(0 $\AA$, 0.11 $\AA$, 0.3 $\AA$)]$_{80}$/NiFe(90 $\AA$)/Ta(50 $\AA$) were prepared by ion beam sputtering. The average x-ray diffraction peak ratios NiFe(111) of FeMn (111) fcc textures for the Mn inserted total thicknesses of 0 $\AA$, 9 $\AA$, and 24 $\AA$ were about 0.65, 0.90, and 1.5, respectively. For the sample without Mn inserted layer, the $H_{2ex}$ of 260 Oe up to 300 $^{\circ}C$ disappeared at 350 $^{\circ}C$. For two multilayer samples with ultra-thin Mn layers of 0.11 $\AA$ and 0.3 $\AA$, the $H_{2exs}$ of 310 Oe and 180 Oe up to 300 $^{\circ}C$ endured of 215 Oe and 180 Oe at 350 $^{\circ}C$, respectively. The $H_{ex}$ (bottom)s of three samples decreased from 100 Oe to 70 Oe up to 250 $^{\circ}C$, while these values increased beyond 300 $^{\circ}C$. This observation can be attributed to less diffusive path of Mn atoms in bottom NiFe than top NiFe layer. The top and bottom coercive fields slightly varied about 5 Oe∼10 Oe. From these results, we could obtain the enhancement of exchange coupling intensity and thermal stability by an ultra-thin Mn inserted layer on NiFe/[FeMn/Mn]$_{80}$/NiFe Multilayers.

Effect of $Ar/H_2$ Mixed Gas Sputtering on the Exchange Coupling of NiFe/WeMn Interface (스퍼터링 가스내 수소첨가에 의한 NiFe/FeMn의 교환결합력 향상에 관한 연구)

  • 이성래;박병준;김성훈;김영근
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.146-150
    • /
    • 2001
  • The effect of H$_2$ content in Ar sputtering gas on exchange coupling field(H$_{ex}$) for NiFe/FeMn interface was studied. When NiFe layer of Si(100)/Ta(50 $\AA$)/NiFe(60 $\AA$)/FeMn(250 $\AA$)Ta(50 $\AA$) was deposited at 8% H$_2$ in sputtering gas, the maximum exchange coupling field(H$_{ex}$) and minimum coercivity(H$_{c}$) were obtained. When Si(100)/Ta(50 $\AA$)/NiFe(60 $\AA$)/FeMn(250 $\AA$)/NiFe(70 $\AA$)/Ta(50 $\AA$) was deposited at 5% H$_2$ in sputtering gas, the maximum exchange coupling field(H$_{ex}$) of 148 Oe was obtained. The (111) preferred orientation and grain size of underlayer NiFe were increased and the internal stress was reduced by H$_2$ in sputtering gas. And the (111) preferred orientation and grain size of FeMn layer were also increased.d.ased.

  • PDF

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on These Relative Contents, Uptake Amounts, and Mutual Ratios in Orchardgrass and White Clover (Fe, Mn, Cu, Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover중 이들의 상대 함량, 탈취량 및 상호비율에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.4
    • /
    • pp.281-292
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of systematic variation appling of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover, The treatments of systematic variation were 0/100. 25/75, 50/50. 75/25, and $100/0\%$ in the Fe/Cu, Mn/Zn, and Fe+Cu/Mn+Zn trials, respectively. The treatments of Fe/Mn/Cu/Zn trial were $70\%$ in main-element and $10\%$ in other 3sub-elements. 1 . General differences had been showed in the relative contents, uptake amounts, and mutual ratios of Fe, Mn, Cu, and Zn between orchardgrass and white clover. The effects of Fe application on the all traits were generally insignificant. The Mn and Cu applications, however, showed consistent differences in the all traits. At the high relative content of Mn in the forages influenced by the Mn application, the relative contents of Fe, Cu and Zn were greatly decreased without the significant differences in common content. 2. The increase of uptake amount of each micronutrient was not positively correspond to the yield increase. In some cases, the uptake amount of micronutrient was greatly increased without the significant increase of yield. At the Mn application, the Mn uptake amount was relatively much more increased than increase of the yield. The uptake amount of each element was significantly increased by the application with Mn and Cu. However, it was not in the case of Fe and Zn. 3. The mutual ratios of micronutrients were more influenced by the applications of Mn and Cu, especially Mn, than those by the applications of Fe and Zn. In the Fe/cu trial, the ratios of Fe/Cu showed 6.0~ 10.5 in orchardgrass and 10.2~ $16.4\%$ level of difference in white clover. In the Fe+Cu/Mn+Zn trial, the ratios of Mn/Cu, Mn/Zn, and Fe/Mn were greatly influenced by the treatments. It has been also found that the poor growth of white clover was caused by the unbalanced ratios of Fe/Mn, and it tended to be enhanced by the good applications and mutual ratios of other elements.

Study on the Improvement of Exchange Bias and Magnetoresistance in Co/Cu/Co/FeMn Spin Valve by Heat Treatment (Co/Cu/Co/FeMn 스핀밸브의 자기저항 특성 향상 연구)

  • Kim, Hong-Jin;Bae, Jun-Soo;Noh, Eun-Sun;Lee, Taek-Dong;Lee, Hyuck-Mo
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.24-29
    • /
    • 2002
  • It was observed that exchange bias field was increased with smooth surface and better ${\gamma}$-FeMn formation. Sputtering conditions were varied for the control of the surface roughness and ${\gamma}$-FeMn formation. From the results of Cu deposition as underlayer, it was found that ${\gamma}$-FeMn formation was closely related with the thickness of underlayer. After heat treatment, exchange bias field was increased over three times. This improvement was likely that the crystallites of ${\gamma}$-FeMn were well formed. In Co/Cu/Co/FeMn spin valve structure, magnetoresistance was increased over 1.4 times through the heat treatment. This was due to the disappearance of Co/Cu intermixed dead layer and removal of defect, and this was examined by AES analysis.

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on the Growth, Root/Nodule, and Flowering of Orchardgrass and White Clover (Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White clover의 생육, 뿌리/근류 및 개화에 미치는 영향)

  • 정연규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.2
    • /
    • pp.105-114
    • /
    • 2004
  • This pot experiment was. conducted to investigate the effects of systematic variation application of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and 100/0% in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe + Cu/Mn + Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were composed of 70% in main element and 10% in other 3 elements, respectively. 1. In general, the unbalanced applications of Fe and Mn resulted in the Mn and Fe deficiencies(chlorosis) on white clover, respectively, because of the antagonism between Fe and Mn. In white clover, the traits of growth, root/nodule, and flowering, which were influenced by the systematic variation of Fe, Mn, Cu, and Zn, were closely correlated to each other. In the Fe/Cu trial, the 0/100 and 25/75 induced a Fe-deficiency on white clover, and the 0/100 also showed poor root growth and flowering. In addition, the 50/50 and 75/25 showed an early flowering of white clover. 2. In the Mn/Zn trial, the 0/100 induced a severe Mn-deficiency(chlorosis) on white clover. The 25/75 and 50/50, however, diminished the chlorosis symptom. The 75/25 and 100/0 showed generally good root growth and flowering of white clover. 3. In the Fe + Cu/Mn + Zn trial, the 0/100 induced a Fe-deficiency, and the 100/0 induced a Mn-deficiency on white clover, which were correlated to the poor root growth and flowering. The 75/25 showed good root growth and flowering of white clover. 1be flowering of white clover tended to be more influenced by the Fe + Cu than by the Mn + Cu ratios. 4. In the Fe/Mn/Cu/Zn trial, the Fe and Mn deficiencies on white clover, which were influenced by the Mn and Fe treatments, also occurred. The Cu and Zn-deficiency symptoms, however, were not recognized. General differences have been showed in the numbers of flowers as following orders; Zn > Cu > Mn > Fe - 70% treatments.

Effect of Manganese Content on the Magnetic Susceptibility of Ferrous-Manganese Alloys: Correlation between Microstructure on X-Ray Diffraction and Size of the Low-Intensity Area on MRI

  • Youn, Sung Won;Kim, Moon Jung;Yi, Seounghoon;Ahn, Hyun Jin;Park, Kwan Kyu;Lee, Jongmin;Lee, Young-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.76-87
    • /
    • 2015
  • Purpose: There is an ongoing search for a stent material that produces a reduced susceptibility artifact. This study evaluated the effect of manganese (Mn) content on the MRI susceptibility artifact of ferrous-manganese (Fe-Mn) alloys, and investigated the correlation between MRI findings and measurements of Fe-Mn microstructure on X-ray diffraction (XRD). Materials and Methods: Fe-Mn binary alloys were prepared with Mn contents varying from 10% to 35% by weight (i.e., 10%, 15%, 20%, 25%, 30%, and 35%; designated as Fe-10Mn, Fe-15Mn, Fe-20Mn, Fe-25Mn, Fe-30Mn, and Fe-35Mn, respectively), and their microstructure was evaluated using XRD. Three-dimensional spoiled gradient echo sequences of cylindrical specimens were obtained in parallel and perpendicular to the static magnetic field (B0). In addition, T1-weighted spin echo, T2-weighted fast spin echo, and $T2^*$weighted gradient echo images were obtained. The size of the low-intensity area on MRI was measured for each of the Fe-Mn binary alloys prepared. Results: Three phases of ${\alpha}^{\prime}$-martensite, ${\gamma}$-austenite, and ${\varepsilon}$-martensite were seen on XRD, and their composition changed from ${\alpha}^{\prime}$-martensite to ${\gamma}$-austenite and/or ${\varepsilon}$-martensite, with increasing Mn content. The Fe-10Mn and Fe-15Mn specimens comprised ${\alpha}^{\prime}$-martensite, the Fe-20Mn and Fe-25Mn specimens comprised ${\gamma}+{\varepsilon}$ phases, and the Fe-30Mn and Fe-35Mn specimens exhibited a single ${\gamma}$ phase. The size of the low-intensity areas of Fe-Mn on MRI decreased relative to its microstructure on XRD with increasing Mn content. Conclusion: Based on these findings, proper conditioning of the Mn content in Fe-Mn alloys will improve its visibility on MR angiography, and a Mn content of more than 25% is recommended to reduce the magnetic susceptibility artifacts on MRI. A reduced artifact of Fe-Mn alloys on MRI is closely related to the paramagnetic constitution of ${\gamma}$-austenite and/or ${\varepsilon}$-martensite.