• 제목/요약/키워드: Fe-Cr-Al foam

검색결과 9건 처리시간 0.024초

수소제조를 위한 다공성 FeCrAl 금속 합금 Foam의 NiO 촉매 담지 및 미세구조 분석 (Synthesis and Microstructure Analysis of NiO Catalysts Coated on the FeCrAl Metal Alloy Foam for Hydrogen Production)

  • 이유진;안건형;박만호;이창우;최상현;정주용;조성종;이근재;안효진
    • 한국재료학회지
    • /
    • 제24권8호
    • /
    • pp.393-400
    • /
    • 2014
  • NiO catalysts were successfully coated onto FeCrAl metal alloy foam as a catalyst support via a dip-coating method. To demonstrate the optimum amount of NiO catalyst on the FeCrAl metal alloy foam, the molar concentration of the Ni precursor in a coating solution was controlled, with five different amounts of 0.4 M, 0.6 M, 0.8 M, 1.0 M, and 1.2 M for a dip-coating process. The structural, morphological, and chemical bonding properties of the NiO-catalyst-coated FeCrAl metal alloy foam samples were assessed by means of field-emission scanning electron microscopy(FESEM), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). In particular, when the FeCrAl metal alloy foam samples were coated using a coating solution with a 0.8 M Ni precursor, well-dispersed NiO catalysts on the FeCrAl metal alloy foam compared to the other samples were confirmed. Also, the XPS results exhibited the chemical bonding states of the NiO phases and the FeCrAl metal alloy foam. The results showed that a dip-coating method is one of best ways to coat well-dispersed NiO catalysts onto FeCrAl metal alloy foam.

분말 합금법으로 제조된 Fe-Cr-Al 금속 다공체의 구조, 미세조직 및 기계적 특성 (Structural Characteristics, Microstructure and Mechanical Properties of Fe-Cr-Al Metallic Foam Fabricated by Powder Alloying Process)

  • 김규식;강병훈;박만호;윤중열;이기안
    • 한국분말재료학회지
    • /
    • 제27권1호
    • /
    • pp.37-43
    • /
    • 2020
  • The Fe-22wt.%Cr-6wt.%Al foams were fabricated via the powder alloying process in this study. The structural characteristics, microstructure, and mechanical properties of Fe-Cr-Al foams with different average pore sizes were investigated. Result of the structural analysis shows that the average pore sizes were measured as 474 ㎛ (450 foam) and 1220 ㎛ (1200 foam). Regardless of the pore size, Fe-Cr-Al foams had a Weaire-Phelan bubble structure, and α-ferrite was the major constituent phase. Tensile and compressive tests were conducted with an initial strain rate of 10-3/s. Tensile yield strengths were 3.4 MPa (450 foam) and 1.4 MPa (1200 foam). Note that the total elongation of 1200 foam was higher than that of 450 foam. Furthermore, their compressive yield strengths were 2.5 MPa (450 foam) and 1.1 MPa (1200 foam), respectively. Different compressive deformation behaviors according to the pore sizes of the Fe-Cr-Al foams were characterized: strain hardening for the 450 foam and constant flow stress after a slight stress drop for the 1200 foam. The effect of structural characteristics on the mechanical properties was also discussed.

NiO 촉매의 분산성 및 안정성 향상을 위하여 FeCrAl 합금 폼 위에 성장된 Al2O3 Inter-Layer 효과 (Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts)

  • 이유진;구본율;백성호;박만호;안효진
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.391-397
    • /
    • 2015
  • NiO catalysts/$Al_2O_3$/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD) and subsequent dip-coating methods. FeCrAl alloy foam and $Al_2O_3$ inter-layer were used as catalyst supports. To improve the dispersion and stability of NiO catalysts, an $Al_2O_3$ inter-layer was introduced and their thickness was systematically controlled to 0, 20, 50 and 80 nm using an ALD technique. The structural, chemical bonding and morphological properties (including dispersion) of the NiO catalysts/$Al_2O_3$/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. In particular, to evaluate the stability of the NiO catalysts grown on $Al_2O_3$/FeCrAl alloy foam, chronoamperometry tests were performed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We found that the introduction of $Al_2O_3$ inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, when an $Al_2O_3$ inter-layer with a 80 nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicated improved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can be explained by optimum thickness of $Al_2O_3$ inter-layer resulting from the role of a passivation layer.

수소제조용 FeCrAl 다공체의 내구성 향상을 위한 산화물 형성 (Oxide Layer formation of FeCrAl Foam for the Reliability Improvementin Hydrogen Generation)

  • 이근재;장대환;양현석;공만식
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.101-102
    • /
    • 2014
  • 수소제조용 SMR(steam methane reforming) 공정에 사용될 수 있는 FeCrAl 다공체의 지지체-촉매의 결합력을 향상시키기 위하여 PEO(plasma electrolytic oxidation)법을 이용하여 FeCrAl 표면에 산화물을 형성시켰다. 열처리, 저전압, 고전압, 전해질 농도 등의 공정 조건에 따른 산화막의 형성 거동 및 형성된 산화물의 상분석 등을 진행하였다. PEO 공정을 이용하여 형성된 산화막은 다른 공정에 의하여 형성된 산화막과 비교할 때 치밀한 특징을 보였다. 따라서 본 연구를 통하여 향후 SMR 공정에 사용될 수 있는 FeCrAl 다공체의 내구성 및 수명 향상에 도움을 줄 것으로 기대되었다.

  • PDF

Heat Transfer Characteristics of Aluminium and FeCrAlY Foam

  • Jin, Meihua;Kim, Pil-Hwan;Lee, Hae-Jong;Jeong, Hyo-Min;Chung, Han-Shik
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.395-401
    • /
    • 2008
  • Since metallic foam will increase the performance of heat exchanger, it have caused many researcher's attention recently. Our research base on the model that metallic foams applied to heat exchanger. In this case, there is three kind of heat transfer mechanisms, heat conduction in fibers, heat transfer by conduction in fluid phase, and internal heat change between solid and fluid phases. In this paper we study both the hydraulic and thermal aspect performance. Pressure drop along air flow direction will be presented. As thermal aspect, we first discuss the acceptance of applying thermal equilibrium among the two phases. then to calculate the dimensionless temperature profile, the heat transfer coefficient and Nu number in 14 metallic foams(7 Aluminium foams, 7 FeCrAlY foams). All these discussion is based on the same velocity u=2 m/s.

  • PDF

정전 분무 공정으로 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화 특성에 미치는 기공 크기의 영향 (Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process)

  • 오재성;공영민;김병기;이기안
    • 한국분말재료학회지
    • /
    • 제21권1호
    • /
    • pp.55-61
    • /
    • 2014
  • Fe-Cr-Al powder porous metal was manufactured by using new electro-spray process. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on Polyurethane foam through the electro-spray process. And then degreasing and sintering processes were conduced. In order to examine the effect of cell size ($200{\mu}m$, $450{\mu}m$, $500{\mu}m$) in process, pre-samples were sintered for two hours at temperature of $1450^{\circ}C$, in $H_2$ atmospheres. A 24-hour thermo gravimetric analysis test was conducted at $1000^{\circ}C$ in a 79% $N_2$ + 21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing cell size. In the $200{\mu}m$ porous metal with a thinner strut and larger specific surface area, the depletion of the stabilizing elements such as Al and Cr occurred more quickly during the high-temperature oxidation compared with the 450, $500{\mu}m$ porous metals.

금속 분말을 이용한 합금폼 제조 및 특성 (Fabrication and Properties of Alloy Foam Materials using Metal Powders)

  • 최내현;김구환
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.489-493
    • /
    • 2010
  • Nickel-based and iron-based alloys have been developed and commercialized for a wide range of high performance applications at severely corrosive and high temperature environment. This alloy foam has an outstanding performance which is predestinated for diesel particulate filters, heat exchangers, and catalyst support, noise absorbers, battery, fuel cell, and flame distributers in burners in chemical and automotive industry. Production of alloy foam starts from high-tech coating technology and heat treatment of transient liquid-phase sintering in the high temperature. These technology allow for preparation of a wide variety of foam compositions such as Ni, Cr, Al, Fe on various pore size of pure nickel foam or iron foam in order for tailoring material properties to a specific application.

정전 분무법을 이용하여 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화에 미치는 소결 온도의 영향 (Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process)

  • 오재성;공영민;김병기;이기안
    • 한국분말재료학회지
    • /
    • 제19권6호
    • /
    • pp.435-441
    • /
    • 2012
  • A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of $1350^{\circ}C$, $1400^{\circ}C$, $1450^{\circ}C$, and $1500^{\circ}C$, respectively, in $H_2$ atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at $1000^{\circ}C$ in a 79% $N_2$+21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at $1500^{\circ}C$ sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.

발포금속의 열전달 특성에 관한 실험적 연구 (Study on the Heat Transfer Characteristic of Metallic Foam)

  • 김필환;김미화;김영진;정효민;정한식
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.618-623
    • /
    • 2008
  • To enhancement heat transfer performance, the metallic foam as heat exchanger was studied rapidly. This was attributed to its high surface area to volume ratio as well as intensive flow mixing by tortuous flow passages. So the experimental study about the heat transfer characteristic of metallic foam is presented in this paper. The material in this experiment was used as FeCrAl which has density of 10 ppi, 20 ppi and 30 ppi respectively. And the results show the heat transfer is rise with permeability Reynolds number increase and the pressure drop metallic foam was increased with the ppi increase.

  • PDF