• Title/Summary/Keyword: Fe-Co-Ni

Search Result 994, Processing Time 0.031 seconds

Microstructure and Mechanical Properties of CoCrFeMnNi-type High-entropy Alloy Fabricated by Selective Laser Melting: A Review (선택적 레이저 용융법으로 제조된 CoCrFeMnNi계 고엔트로피합금의 미세조직 및 기계적 물성 연구 동향)

  • Park, Jeong Min
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.132-151
    • /
    • 2022
  • The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single face-centered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength-ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.

Complex Permeability Analysis of NiCuZn Ferrites (NiCuZn 계 페라이트의 조성에 따른 복소투자율 변화 해석)

  • 남중희;오재희
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.382-387
    • /
    • 1996
  • The characteristics of the complex permeability of ${(Ni_{x}Cu_{0.2}Zn_{0.8-x}O)}_{1-w}{(Fe_{2}O_{3})}_{1+w}$ with various Ni and $Co_{3}O_{4}$ contents were investigated in this work. It is found that the NiCuZn ferrites with $x{\geq}0.6$ have a relatively small peak width of the imaginary part of permeability $\mu$". The resonance frequency is increased as Ni content becomes higher, where the loss is low. The $\mu$" value decreases with increasing FezO, deficiency, but the resonance frequency($f_{\mu"max}$) is only slightly affected by $Fe_{2}O_{3}$ deficiency. In case of $Co_{3}O_{4}$ addition to the NiCuZn ferrites, the $f_{\mu"max}$ increases since the initial permeability decreases with the amount of $Co_{3}O_{4}$. It is concluded that the Ni content in the NiCuZn ferrite is a dominant factor for the total loss of these spinel ferrites.

  • PDF

Tribological Behavior of Electro-pressure Sintered Cobalt-Iron, Cobalt-Nickel, and Cobalt-Iron-Nickel Compacts

  • Kim, Yong-Suk;Kwon, Yong-Jin;Kim, Tai-Woong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1124-1125
    • /
    • 2006
  • Dry sliding wear behavior of electro-pressure sintered Co-Fe, Co-Ni and Co-Fe-Ni compacts was investigated. Pin-on-disk wear tests were performed on the sintered compacts disk specimens against alumina $(Al_2O_3)$ and silica $(SiO_2)$ ball counterparts at various loads ranging from 3N to 12N. Two sliding speeds of 0.1m/sec and 0.2m/sec and a fixed sliding distance of 1,000m were employed. Worn surfaces and cross sections of them were examined by a scanning electron microscopy, and wear mechanism of the compacts was investigated. Effects of the oxide layer that was formed on wearing surface of the compacts on the wear were also studied.

  • PDF

Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

  • Kwon, Woo-Hyun;Kang, Jeoung-Yun;Lee, Jae-Gwang;Lee, Seung-Wha;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.159-164
    • /
    • 2010
  • The Zn, Co and Ni substituted manganese ferrite powders, $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$, were fabricated by the solgel method, and their crystallographic and magnetic properties were studied. The Zn substituted manganese ferrite, $Zn_{0.2}Mn_{0.8}Fe_2O_4$, had a single spinel structure above $400^{\circ}C$, and the size of the particles of the ferrite powder increased when the annealing temperature was increased. Above $500^{\circ}C$, all the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ ferrite had a single spinel structure and the lattice constants decreased with an increasing substitution of Zn, Co, and Ni in $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$. The Mossbauer spectra of $Mn_{1-x}Zn_xFe_2O_4$ (0.0$\leq$x$\leq$0.4) could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. For x = 0.6 and 0.8 they showed two Zeeman sextets and a single quadrupole doublet, which indicated they were ferrimagnetic and paramagnetic. And for x = 1.0 spectrum showed a doublet due to a paramagnetic phase. For the Co and Ni substituted manganese ferrite powders, all the Mossbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The variation of the Mossbauer parameters are also discussed with substituted Zn, Co and Ni ions. The increment of the saturation magnetization up to x = 0.6 in $Mn_{1-x}Co_xFe_2O_4$ could be qualitatively explained using the site distribution and the spin magnetic moment of substituted ions. The saturation magnetization and coercivity of the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ (x = 0.4) ferrite powders were also compared with pure $MnFe_2O_4$.

Heavy Metal Concentration of Soils and Plants in Baekdong Serpentinite Area, Chungnam - A Case of Pinus densiflora and Pinus rigida - (충남 백동 사문암지역의 토양 및 식물체내 중금속 함량 - 소나무 및 리기다소나무를 중심으로 -)

  • 민일식;송석환;김명희;장관순
    • Korean Journal of Environment and Ecology
    • /
    • v.12 no.3
    • /
    • pp.271-278
    • /
    • 1998
  • Heavy metal concentrations in rocks and soils from serpentinite(SP) and in plants (Pinus densiflora: PD and Pinus rigida: PR) were examined at Baekdong mine in Hongsung, Chungnam. Parent rocks were compared with amphibole schist(AS) and gneiss(GN) and plants divided the above grounds and roots were examined, respectively. In rocks, Ni, Cr, Co, Fe concentrations in SP were higher than those in AS and GN. The concentrations of top soils had the similar differences to their rocks; especially Ni, Cr, Co, Fe concentrations were the highest in SP, Zn and Sc concentrations, however, were the highest in AS. Average Ni, Cr, Co, Au, As, Sb, W concentrations of PD were the highest in SP and especially Ni, Cr, Co concentrations were accorded with changes of rocks and top soils. Zn and Sc concentrations in AS were higher and Fe and Mo concentrations in GN were higher than those in SP. Compared with two plants in the same serpentinite sites, most elements of PR were higher than those of PD. Therefore, these suggested PR absorbed much heavy metal than PD. Most element concentrations of roots in two plants and three rocks were higher than those of the above ground. Relative ratios (average plant concentration/soil concentration) of Ni, Cr, Co, Zn, Sc, Fe in AS and GN were higher than those of SP. Especially, relative ratios of most elements except Zn in GN were the highest.

  • PDF