• Title/Summary/Keyword: Fe-Co

Search Result 3,617, Processing Time 0.028 seconds

Magnetic anisotropy of Al/Tb-Fe-Co multilayer thin films (Al/Tb-Fe-Co 다층박막의 자기적 이방특성)

  • 김명한;문정탁;신웅식;임기조
    • Electrical & Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.8-13
    • /
    • 1992
  • 일련의 Al/Tb-Fe-Co 다층박막 시편이 DC마그네트론 스퍼터링에 의해 제조되었다. 이 박막들은 (xA/yB)n의 형태이고 여기서 x와 y는 각각 Al 및 Tb-Fe-Co 박막의 두께를 나타내고 n은 각 박막의 수를 나타낸다. 각 박막의 두께는 2~40nm이다. Al과 Tb-Fe-Co박막의 두께변화에 따른 다층박막의 자기적 성질이 vibration sample magnetometry(VSM)에 의해 측정되었다. 이들 다층박막은 동일한 스퍼터링조건에서 제조되고 수평 자기적 이방성 특성을 보이고 있는 단층 Tb-Fe-Co박막을 기준시편으로 하여 자기적 성질이 비교되었다. 다층박막 시스템에서는 현저한 계면 또는 박막두께의 효과가 발견되었으며 이들 효과에 의해 단층박막의 수평자기체가 다층박막에서는 강한 수직자기체로 변화되는 것을 알 수 있고, 또한 Al과 Tb-Fe-Co합금 경계구역에 스퍼터링에 따른 약 2nm두께의 dead layer가 존재함이 입증 되었다.

  • PDF

Structural and Magnetic Properties of Epitaxial FexCo100-x Alloys Grown on Cr Substrate

  • Hossain, M.B.;Kim, C.G.;Chun, B.S.;Kim, W.D.;Hwang, C.
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.1-4
    • /
    • 2014
  • We report the correlation between the magnetic properties and lattice parameter of $Fe_xCo_{100-x}$ alloys as a function of constituent concentration. The saturation magnetization increases with Fe content and has a maximum value at approximately x=70 at.%. However, collapse in relative saturation magnetization is observed at approximately 30 at.% to 70 at.% of Fe in $Fe_xCo_{100-x}$ alloys. The collapse is due to the formation of Co-Co and Fe-Fe antibonding states instead of Fe-Co bonds. The lattice parameter also shrinks at approximately 30 at.% to 70 at.% of Fe. This shrinkage is due to an increase in the number of nearest neighbor antisite atoms, which then leads to a decrease in the long range order parameter.

Removal Characteristics of Phenol at Advanced Oxidation Process with Ozone/Activated Carbon Impregnated Metals (오존/촉매 산화공정에서 금속담지 활성탄을 이용한 페놀의 분해 특성)

  • Choi, Jae Won;Yoon, Ji Young;Park, Jin Do;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.302-307
    • /
    • 2012
  • Advanced oxidation processes (AOP) such as O3/activated carbon process and O3/catalysts process were used to compare the decomposition of phenol. Catalysts such as Pd/activated carbon (Pd/AC), Mn/activated carbon (Mn/AC), Co/activated carbon (Co/AC) and Fe/activated carbon (Fe/AC) were prepared by impregnation of Pd, Mn, Co and Fe into the activated carbon of pellet form, respectively. Based on an hour of reactions, the following descending order for the decomposition ratios of dissolved O3 to the 1.48 mg/L of saturated dissolved O3 was observed: Mn/AC (45%) > Pd/AC (42%) > Co/AC (33%) > AC (31%) > Fe/AC (27%). The removal efficiencies of phenol were also arranged in the descending order of AOP as follows: Mn/AC (89%) > Pd/AC (85%) > Co/AC (77%) > AC (76%) > Fe/AC (71%). The remaining ratios (C/Co) of TOC (total organic carbon) after an hour of experiments were arranged in the ascending order of AOP as follows : Pd/AC (0.29) < Mn/AC (0.36) < AC (0.40) < Co/AC (0.49) < Fe/AC (0.51). However, the catalytic effects in the Co/AC and the Fe/AC processes were little in comparison with O3/AC process. The maximum concentrations of intermediates such as hydroquinone and catechol formed from the decomposition of phenol were arranged in the ascending order of AOP as follows: Pd/AC < Fe/AC < Co/AC < AC < Mn/AC. In the case of Pd/AC process, these intermediates were almost disappeared after an one hour of reaction.

Analysis of Magnetic Isotropy Property using Magnetoresistance Curve of CoFe/Cu/CoFe/PtMn Multilayer Film (CoFe/Cu/CoFe/PtMn 다층박막의 자기저항 곡선을 이용한 자기 등방성 특성 분석)

  • Choi, Jong-Gu;Kim, Su-Hee;Choi, Sang-Heon;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.123-128
    • /
    • 2017
  • The magnetic isotropy property from the magnetoresistance (MR) curve and magnetization (MH) loop for the PtMn based spin valve (SV) multilayer films fabricated with different the bottom structure after post-annealing treatment was investigated. The exchange biased coupling field ($H_{ex}$), coercivity ($H_c$), and MR ratio of Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/Ta(4 nm) SV multilayer film without antiferromagnetic PtMn layer are 0 Oe, 25 Oe, and 3.3 %, respectively. MR curve for the Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/PtMn(6 nm)/Ta(4 nm) SV multilayer film showed $H_{ex}=2Oe$, $H_c=316Oe$, and MR (%) = 4.4 % with one butterfly MR curve having by the effect of antiferromagnetic PtMn layer. MR curve for the dualtype Glass/Ta(10 nm)/CoFe(6 nm)/Cu(2.5 nm)/CoFe(3 nm)/PtMn(6 nm)/CoFe(3 nm)/Cu(2.5 nm)/CoFe(6 nm)/Ta(4 nm) SV multilayer film showed $H_c=37.5Oe$ and 386 Oe, MR = 3.5 % and 6.5 % with two butterfly MR curves and square-like hysteresis MH loops. The anisotropy property in CoFe spin valve-PtMn multilayer is neglected by the effects of a very small value of $H_{ex}$ and a very slightly shape magnetic anisotropy. This result is possible to explain the effect of magnetization configuration spin array of the bottom SV film and the top SV film of PtMn layer.

Magnetoresistance of ${[Co/Fe/Cu]}_20$ Multilayers (${[Co/Fe/Cu]}_20$ 다층박막의 자기저항 특성)

  • 이장로
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.411-416
    • /
    • 1996
  • We have studied the effect of a spin-dependence interface electron scattering on the giant magnetoresistance by adding a Fe magnetic material to the Co/Cu interfaces. The $Fe(50\;{\AA})/[Co(17\;{\AA})/Fe(t\;{\AA})/Cu(24\;{\AA})]_{20}$ multilayers are deposited on the Corning glass 2948 and 7059 substrates in a dc magnetron sputtering system. The magnetoresistance ratio is 22 % in the only Co/Cu multilayer, while it is increased to 26 % with inserted ultra thin Fe interface layer and reduced with increasing thickness of the Fe interface layer. It was investigated to the dependence of the magnetoresistance behaviors on annealing temperature. The magnetic properties of the multilayers were measured by vibrating sample magnetometer. Also, the structures and the surface roughness of samples were characterized by X-ray diffraction and atomic force microscope, respectively. The magnetoresistance ratio was increased to annealing temperature $300^{\circ}C$, but reduced at the temperature higher than $300^{\circ}C$ due to the interfacial diffuse.

  • PDF

Magnetic Propertes of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ Nanocrystalline Alloys ($Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ 초미세결정립합금의 자기특성)

  • 조용수;김만중;천정남;김택기;박우식;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.880-894
    • /
    • 1995
  • Magnetic properties of $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}(x=\;3,\;4,\;5)$ rrelt-spun alloys with 6 at% B content were studied aiming for finding out a new $\alpha$-Fe based Nd-Fe-B nanocrystalline alloy with good hard magnetic properties. $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}$ melt-spun alloys prepared by RSP crystallized to nanocrystalline phase. An optimally annealed $Nd_{3}{(Fe_{0.9}Co_{0.1})}_{87}B_{6}Nb_{3}Cu_{1}$ melt-spun alloys had larger volume ratio of $\alpha$-Fe(Co) than that of higher Nd content alloy and showed high remanence of about 1.6 T. On the contrary, the increase of Nd content in $Nd_{x}{(Fe_{0.9}Co_{0.1})}_{90-x}B_{6}Nb_{3}Cu_{1}$ alloys gave rise to gradual increase of an amount of $Nd_{2}{(Fe,\;Co)}_{14}B$ phase and improved coercivity. An optimally annealed $Nd_{5}{(Fe_{0.9}Co_{0.1})}_{85}B_{6}Nb_{3}Cu_{1}$ alloy showed the most improved hard mag¬netic properties. The remanence, coercivityand energy product of the alloy were 1.35 T, 219 kA/m (2.75 kOe), and $129\;kJ/m^{3}$ (16.2 MGOe), respectively.

  • PDF

The Effects of Co Addition on Glass Forming Ability and Magnetic Properties for FeSiBNb Ribbon Alloys (FeSiBNb 리본 합금의 비정질 형성능과 자기적 특성에 미치는 Co의 첨가 효과)

  • Lee, Tae-Gyu;Noh, Tae-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • The thermal and magnetic properties of amorphous (FeCo)SiBNb ribbon alloys with high glass forming ability have been investigated. The glass forming ability was enhanced by Co substitution in amorphous ($Fe_{1-X}Co_X)_{72}Si_4B_{20}Nb_4$ alloys with the thickness of about $40{\mu}m$. With the increase in Co content, the temperature range of supercooled liquid phase increased indicating the high glass forming ability of the Co-added alloys. Further the ac permeability increased, and the core loss decreased considerably by Co substitution, while small change in $B_8$ (magnetic flux density at 800 A/m) was observed. The frequency characteristics of permeability deteriorated as compared to conventional amorphous ribbon alloys with the thickness of about $20\;{\mu}m$ due to the increased skin effect.

Effects of Cr Doping on Magnetic Properties of Inverse Spinel CoFe2O4 Thin Films

  • Kim, Kwang-Joo;Kim, Hee-Kyung;Park, Young-Ran;Park, Jae-Yun
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.51-54
    • /
    • 2006
  • Variation of magnetic properties through Cr substitution for Co in inverse-spinel $CoFe_2O_4$ has been investigated by vibrating-sample magnetometry (VSM) and conversion electron $M\ddot{o}ssbauer$ spectroscopy (CEMS). $Cr_{x}Co_{1-x}Fe_2O_4$ samples were prepared as thin films by a sol-gel method. The lattice constant of the $Cr_{x}Co_{1-x}Fe_2O_4$ samples was found to remain unchanged, explainable in terms of a reduction of tetrahedral $Fe^{3+}$ ion to $Fe^{2+}$ due to substitution of $Cr^{3+}$ ion into octahedral $Co^{2+}$ site. The existence of the tetrahedral $Fe^{2+}$ ions in $Cr_{x}Co_{1-x}Fe_2O_4$ was confirmed by CEMS analysis. Room-temperature magnetic hysteresis curves for the $Cr_{x}Co_{1-x}Fe_2O_4$ films measured by VSM revealed that the saturation magnetization $M_s$ increases by Cr doping. The $M_s$ is maximized when x = 0.1 and decreases for higher x but is still bigger than that of $CoFe_2O_4$. The increase of $M_s$ can be explained partly by the reduction of the tetrahedral $Fe^{3+}$ ion to $Fe^{2+}$.