• Title/Summary/Keyword: Fe-29Ni-17Co Alloy

Search Result 9, Processing Time 0.022 seconds

The Effect of B addition on the High Temperature Behavior of Low Thermal Expansion Fe-29%Ni-17%Co Kovar Alloy (저열팽창성 Fe-29%Ni-17%Co 코바 합금의 고온 변형 거동에 미치는 B 첨가의 영향)

  • Kwon, S.H.;Park, J.H.;Kim, M.C.;Lee, K.A.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.491-492
    • /
    • 2008
  • The effect of B on the hot ductility of Fe-29Ni-17Co Kovar alloy and the mechanism of high temperature deformation behavior were investigated. Hot-tensile test was carried out at the temperature range of $900^{\circ}C-1200^{\circ}C$. Optical microscopy and scanning electron microscopy were used to investigate the microstructure and fracture during hot deformation. The hot ductility of Kovar alloy was drastically increased with the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range($900^{\circ}C$).

  • PDF

Effects of Alpha Phase on the Fatigue Properties of Fe-29%Ni-17%Co Low Thermal Expansion Alloy (Fe-29%Ni-17%Co 저열팽창 합금의 피로 특성에 미치는 알파상의 영향)

  • Kim, Min-Jong;Gwon, Jin-Han;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.481-487
    • /
    • 2014
  • The effect of alpha phase on the fatigue properties of Fe-29%Ni-17%Co low thermal expansion alloy was investigated. Two kinds of alloys (Base alloy and Alpha alloy) were prepared by controlling the minimal alloy composition. Microstructure observation, tensile, high-cycle fatigue, and low-cycle fatigue results were measured in this study. The Base alloy microstructure showed typical austenite ${\gamma}$ phase. Alpha alloy represented the dispersed phase in the austenite ${\gamma}$ matrix. As a result of tensile testing, Alpha alloy was found to have higher strengths (Y.S. & T.S.) and lower elongation compared to those of the Base alloy. High cycle fatigue results showed that Alpha alloy had a higher fatigue limit (360MPa) than that (330MPa) of the Base alloy. The Alpha alloy exhibited the superior high cycle fatigue property in all of the fatigue stress conditions. SEM fractography results showed that the alpha phase could act to effectively retard both fatigue crack initiation and crack propagation. In the case of low-cycle fatigue, the Base alloy had longer fatigue life in the high plastic strain amplitude region and the Alpha alloy showed better fatigue property only in the low plastic strain amplitude region. The fatigue deformation behavior of the Fe-29%Ni-17%Co alloy was also discussed as related with its microstructure.

Structure and Properties of Fe-29Ni-17Co Alloy Manufactured by Air Induction Melting and Electro-Slag Remelting (AIM 및 ESR 법에 의해 제조한 Fe-29Ni-17Co 합금의 조직 및 성질)

  • Lee, Jeong-Keun;Kim, Moon-Hyun;Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.22 no.4
    • /
    • pp.160-166
    • /
    • 2002
  • The structure and properties of Fe-29Ni-17Co alloy which had been melted using induction furnace in air atmosphere and than electroslag-remelted were investigated. The oxygen content was reduced to 0.03% when the ingot was refined from $0.09{\sim}0.12%$ of that air melted. The amounts of spheroidal oxides inclusions and gas porosities of ingot were markedly reduced by the ESR process. CTE of ESR ingot contained small amount of oxides and porosities was found to be lower than that of AIM ingot, and tensile properties of ESR ingot and plate were found to be superior than that of AIM ingot and plate.

Cyclic Creep Properties of Nicoseal(Fe-29Ni-17Co) Alloy (Nicoseal(Fe-29Ni-17Co) 합금의 Cyclic 크리프 특성)

  • Park, Yong-Gwon;Choi, Jae-Ha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.177-182
    • /
    • 2005
  • The steady state cyclic mechanism, and the behaviour of Nicoseal(Fe-29Ni-17Co) have been examined under the condition of square wave stress cyclic tension creep test at the temperature, stress and frequency range of $430{\sim}470^{\circ}C$($0.41{\sim}0.43T_m$), 353~383 MPa, and 3 cpm, respectively. Also, the relationship between cyclic creep and static creep have been examined. The stress exponents(n) for the static creep deformation of this alloy were 11.6, 10.0, 8.4 and 7.9 at the temperature of 430, 445, 460 and $470^{\circ}C$, respectively. The apparent activation energies (Q) for the static creep deformation were 54.2, 51.8, 49.7 and 46.8 kcal/mole for the stress of 353, 363, 373 and 383 MPa, From the above results, it could be considered that the cyclic creep accelaration phenomena was obtained and that the cyclic deformation for Nicoseal seemed to be controlled by dislocation climb over the range of experimental conditions. Nicoseal alloy under the cyclic creep conditions was obtained as P=(T+460)(logt+17). The failure plane observed by SEM showed up transgranular fracture at all range.

Effect of cold working on the thermal expansion and mechanical properties of Fe-29%-Ni-17%Co low thermal expansion alloy (Fe-29%Ni-17%Co 저열팽창성 합금의 기계적 및 열팽창 특성에 미치는 냉간 가공의 영향)

  • Lee, Kee-Ahn;Kim, Song-Yi;NamKung, Jung;Kim, Mun-Chul
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.355-356
    • /
    • 2009
  • The change of thermal expansion and mechanical behaviors by cold working has been investigated in Fe-29%Ni-17%Co low thermal expansion Kovar alloy. Fe-29%Ni-17%Co alloy was cold rolled gradually and prepared to plates having reduction ratio of 0%, 20%, 40%, 60%, and 80%. Annealing effect on the properties was also studied. Thermal expansion was measured from $25^{\circ}C$ to $600^{\circ}C$ with a heating rate of $5^{\circ}C$/min by using vacuum differential dilatometer. It was found that thermal expansion coefficient ($\alpha_{30{\sim}400}$) slightly decreased (reduction ration of 20%) and then remarkably increased (above reduction ration of 40%) with increasing reduction ratio of cold rolling. Thermal expansion coefficient ($\alpha_{30{\sim}400}$) was sharply decreased after annealing heat-treatment. Yield and tensile strengths were continuously increased and elongation was decreased by cold roiling. Microstructural observation and X-ray diffraction analysis results showed that the $\alpha$ phase significantly increased as the reduction ratio increased. The slight decrease of thermal expansion coefficient bellow reduction ration of 20% could be explained by the destroying short-range ordering and the decreasing of grain size. The significant increase of thermal expansion coefficient with cold rolling mainly attributed to the appearance of $\alpha$ phase. The correlation between the microstructural cause and invar phenomena for the low thermal expansion behavior was also discussed.

  • PDF

Effect of Alloying Elements(Mn, Mo, B) on the High Temperature Deformation Behavior of Low Thermal Expansion Fe-Ni-Co Alloy (Fe-Ni-Co 코바 합금의 고온변형거동에 미치는 합금원소(Mn, Mo, B) 첨가의 영향)

  • Lee, Kee-Ahn;Yun, Ae-Cheon;Park, Jung-Chul;NamKung, Jung;Kim, Mun-Chul
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.240-248
    • /
    • 2008
  • The effect of alloying elements(Mn, S, Mo, B) on the high temperature deformation behavior of Fe-29%Ni-17%Co (Kovar) alloy were investigated. And the effect of high temperature oxidation on the hot ductility was also studied. The hot ductility of Kovar alloy was drastically increased with the addition of Mn and lowering of S content. It has been found that the brittle intergranular fracture at high temperature cracking is closely associated with the FeS sulfide along the grain boundary. When Mn was added, the type of sulfide was changed to MnS from FeS and ductile intergranular fracture and transgranular fracture were promoted. The formation of oxide layer was found to have minimized the hot ductility of the Kovar alloy significantly. Grain boundary micro-cracks in the internal oxide region were noted following deformation due to high temperature, one of which acting as a notch that caused the poor hot workability of the oxidized specimen. The addition of Mo to the Kovar alloy could also retard the decrease in the hot ductility of the oxidized specimen through the prevention of notching due to internal oxidation. Hot ductility was remarkably improved by the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range ($900{\sim}1000^{\circ}C$).

Influence of Carbon Content on the Mechanical Properties of the Ni-Co Alloy (Ni-Co 합금강의 기계적 특성에 대한 탄소함량의 영향)

  • 장경천;국중민;정장만;권택용;최병기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.129-135
    • /
    • 2004
  • This study was to evaluate the effect of carbon content on metallic change and fatigue characteristics with Fe-29% Ni-17% Co, low heat expansion alloy, widely using electronic components, precision machines, and sealing with glass and metal etc. The steels were fabricated with variation of carbon content, 0, 0.03, 0.06, 0.1, and 0.20% with VIM and tensile test and fatigue test were performed to achieve the above purpose. The more carbon content, the higher hardness value and yield strength. But elongation of 0.03%C, 0.06%C, and 0.10%C specimen decreased about 2.2%, 1.5% and 0.8% respectively mote than that of the base metal. Especially the strength and elongation of 0.20%C specimen increased simultaneously about 14.4% and 7.5%. Fatigue life of 0.03%C specimen decreased but the more carbon content, the higher fatigue life over 0.06% carbon content more than that of base metal.

  • PDF

Influence of Carbon Content on the Mechanical Properties of the Ni-Co Alloy (Ni-Co 합금강의 기계적 특성에 대한 탄소함량의 영향)

  • Choi, Byung-Ky;Jang, Kyeung-Cheun;Choi, Byung-Hui;Lee, Kee-Ahn
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.7-13
    • /
    • 2006
  • This study was to evaluate the effect of carbon content on metallic change and fatigue characteristics with Fe-29%Ni-17%Co, low heat expansion alloy, widely using electronic components, precision machines, and sealing with glass and metal etc. The steels were fabricated with variation of carbon content, 0, 0.03, 0.06, 0.1, and 0.20% with VIM and tensile test and fatigue test were performed to achieve the above purpose. The more carbon content, the higher hardness value and yield strength. But elongation of 0.03%C, 0.06%C, and 0.10%C specimen decreased about 2.2%, 1.5% and 0.8% respectively more than that of the base metal. Especially the strength and elongation of 0.20%C specimen increased simultaneously about 14.4% and 7.5%. Fatigue life of 0.03%C specimen decreased but the more carbon content, the higher fatigue life over 0.06% carbon content more than that of base metal.

Property of the HPHT Diamonds Using Stack Cell and Zn Coating with Pressure (적층형 셀과 아연도금층을 이용한 고온고압 합성다이아몬드의 압력변화에 따른 물성 연구)

  • Shen, Yun;Song, Oh-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.167-172
    • /
    • 2012
  • Fine diamond powders are synthesized with a 420 ${\phi}$ cubic press and stack-cell composed of Kovar ($Fe_{54}Ni_{29}Co_{17}$) (or Kovar+7 ${\mu}m$-thick Zn electroplated) alloy and graphite disks. The high pressure high temperature (HPHT) process condition was executed at $1500^{\circ}C$ for 280 seconds by varying the nominal pressure of 5.7~10.6 GPa. The density of formation, size, shape, and phase of diamonds are determined by optical microscopy, field emission scanning electron microscopy, thermal gravimetric analysis-differential thermal ammnlysis (TGA-DTA), X-ray diffraction (XRD), and micro-Raman spectroscopy. Through the microscopy analyses, we found that 1.5 ${\mu}m$ super-fine tetrahedral diamonds were synthesized for Zn coated Kovar cell with whole range of pressure while ~3 ${\mu}m$ super-fine diamond for conventional Kovar cell with < 10.6 GPa. Based on $750^{\circ}C$ exothermic reaction of diamonds in TGA-DTA, and characteristic peaks of the diamonds in XRD and micro-Raman analysis, we could confirm that the diamonds were successfully formed with the whole pressure range in this research. Finally, we propose a new process for super-fine diamonds by lowering the pressure condition and employing Zn electroplated Kovar disks.