• Title/Summary/Keyword: Fe particle size

Search Result 572, Processing Time 0.028 seconds

Analysis of Deposited Dust Particles using SEM/EDX (SEM/EDX 분석법을 이용한 침착먼지에 대한 분석사례)

  • Ha, Eun-Ji;Park, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.279-287
    • /
    • 2021
  • In this study, the composition and morphology of deposited dust particles with size ranging from a few to tens ㎛ were investigated using SEM/EDX (scanning electron microscopy with energy dispersive x-ray spectrometer). Then deposited dust particles were classified into 8 groups: quartz, aluminosilicates, ca-rich, Fe/Ti oxide, carbon-rich, industrial particle, Fe-rich, and biogenic particle. The sources of deposited dust were high in the order of aluminosilicates 41% > biogenic 18% > Fe-rich 11% > quartz and C-rich 8% > industrial 7% > Fe/Ti oxide 5% > Ca-rich 1%. In particular, the ratio of biogenic particles was relatively high due to influence of pollen. The ratio of carbon-rich was 11% at YM site, 10% at MD site, and 4% at MO site, and the site close to the large emission source was high.

MAGNETIC PROPERTIES OF GRANULAR Fe-SiO FILMS

  • Furubayashi, Takao;Nakatani, Isao
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.474-477
    • /
    • 1995
  • Granular Fe-SiO films were prepared by co-evaporating in a vacuum. Magnetic properties of the films were investigated by $M\"{o}ssbauer$ and magnetization measurments. The $M\"{o}ssbauer$ data suggest that the films consist of amorphous Fe-Si alloy particles with the size of nanometers. Superparamagnetic magnetization curves were well reproduced by considering the distribution of particle size and the magnetic dipole interaction between particles as the mean field.

  • PDF

Electrochemical Reaction Mechanism with Variation of Pyrite (FeS2) Particle Size for Thermal Battery (열전지용 황철석(FeS2) 입자크기 변화에 따른 전기화학반응 메커니즘)

  • Park, Byeong June
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.246-252
    • /
    • 2017
  • Pulverized $FeS_2$ (pyrite) gives different discharge test results with as-received $FeS_2$ electrodes. The as-received $FeS_2$ electrode shows three voltage plateaus during the discharge test. However, the ball-milled $FeS_2$ electrode shows two voltage plateaus. To interpret this result, the effect of $FeS_2$ particle size on electrochemical reactions is investigated by unit cell discharge tests, SEM and XRD. As a result, it is found that the transition reaction product ($Li_2+xFe+xS_2$) of $FeS_2$ explains the difference. The as-received $FeS_2$ reacts according to three reaction steps ($FeS_2{\rightarrow}Li_3Fe_2S_4{\rightarrow}Li_2+xFe_1+xS_2{\rightarrow}LiFe_2S_4$). However, ball-milled $FeS_2$ reacts without the $Li_2+xFe_1+xS_2$ stage. In this study, this result is explained by the difference in electrochemical reaction mechanism. The as-received $FeS_2$ has a larger radius than the ball-milled $FeS_2$. Therefore, the lithium ion has to diffuse into the $FeS_2$ unreacted core, and $Li_2+xFe_1+xS_2$, the transition reaction product of as-received $FeS_2$, is formed during this stage.

Hydrogen Storage Property Comparison of Pure Mg and Iron (III) Oxide-Added Mg Prepared by Reactive Mechanical Grinding

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.383-387
    • /
    • 2012
  • The activation of Mg-10 wt%$Fe_2O_3$ was completed after one hydriding-dehydriding cycle. Activated Mg-10 wt%$Fe_2O_3$ absorbed 5.54 wt% H for 60 min at 593 K under 12 bar $H_2$, and desorbed 1.04 wt% H for 60 min at 593 K under 1.0 bar $H_2$. The effect of the reactive grinding on the hydriding and dehydriding rates of Mg was weak. The reactive grinding of Mg with $Fe_2O_3$ is believed to increase the $H_2$-sorption rates by facilitating nucleation (by creating defects on the surface of the Mg particles and by the additive), by making cracks on the surface of Mg particles and reducing the particle size of Mg and thus by shortening the diffusion distances of hydrogen atoms. The added $Fe_2O_3$ and the $Fe_2O_3$ pulverized during mechanical grinding are considered to help the particles of magnesium become finer. Hydriding-dehydriding cycling is also considered to increase the $H_2$-sorption rates of Mg by creating defects and cracks and by reducing the particle size of Mg.

Study on the HDDr Characteristics of $Nd_{16}Fe_{76-x}B_8Zr_x$ (x0-2.0) Alloys and the Magnetic Properties of the HDDR Materials

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.1 no.2
    • /
    • pp.75-81
    • /
    • 1996
  • Study on the HDDr Characteristics of Nd16Fe76-xB8Zrx (x=0-2.0) Alloys and the Magnetic Properties of the HDDR Materials Nd16Fe76-xB8Zrx (where x=0-2.0) have been studied to see the effect of Zr addition on HDDR characteristics. A particular emphasis was place upon the anisotropy of the HDDR material. Anisotropy of the HDDR powder material has been evaluated by comparing the remanence values of the aligned sample measured along the aligning direction and the direction perpendicular to it. The HDDR characteristics of the alloys were investigated by means of DAT and TPA. Magnetic chracterisation of the HDDR processed materials was performed using a VSM and a TMA. The magnetic domain structure of the HDDR materials was examined by means of polarised microscope using a solid HDDR processed material. It has veen found that small addition (0.1 at %) of Zr to Nd-Fe-B-type alloy retards thedisproportionatio kinetics of the hydrogenated material. Desorption characteristic of the disproportionated materials has been found not to be affected significantly by the Zr addition. The Zr addition has been found to facilitate size of the powder. As the particle size decreases, the intrinsic coercivity decreases radically, and this is explained in terms of structural damage and/or oxidation caused during mechanical milling. It has also been found that the degree of alignment representing the anisotropic character of the HDDR powder is enhanced with decreasing particle size. Alloys with compositions based on

  • PDF

A Comparative Study of Mechanical Property in Al-8Fe-2Mo-2V-1Zr Bulk Alloys Fabricated from an Atomized Powder and a Melt Spun Ribbon

  • Jung, T.K.;Sung, T.J.;Kim, M.S.;Kim, W.Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1023-1024
    • /
    • 2006
  • Al-8Fe-2Mo-2V-1Zr alloys were prepared by the gas atomization/hot extrusion and the melt spinning/hot extrusion. For the gas atomized and extruded alloy, equiaxed grains with the average size of 400 nm and finely distributed dispersoids with their particle sizes ranging from 50nm to 200nm were observed. For the melt spun and hot extrusion processed alloy, refined microstructural feature consisting of equiaxed grains with the average size of 200nm and fine dispersoids with their particle sizes under 50nm appeared to exhibit a difference in microstructure. Strength of the latter alloy was higher than that for the former alloy up to elevated temperatures.

  • PDF

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.

Effect of Particle Size on Physico-Chemical Properties and Antioxidant Activity of Corn Silk Powder (옥수수수염 분말의 입자크기별 이화학적 특성과 항산화활성)

  • Cha, Sun-Mi;Son, Beom-Young;Lee, Jin-Seok;Baek, Seong-Bum;Kim, Sun-Lim;Ku, Ja-Hwan;Hwang, Jong-Jin;Song, Beom-Heon;Woo, Sun-Hee;Kwon, Young-Up;Kim, Jung-Tae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.41-50
    • /
    • 2012
  • The study was carried out to analyze the relationship between analysis of antioxidant activity and the level of functional components according to particle size of corn silk. Particle size was classified into 5 groups. By particle size distribution and color difference, the total phenol content and DPPH radical scavenging activity were observed. The particle sizes of corn silk were $199.17{\mu}m$, $178.27{\mu}m$, $85.48{\mu}m$, $27.4{\mu}m$ and $20.97{\mu}m$, respectively. The lightness of colored pigments was increased when the particle size was decreased. The contents of free sugar (fructose, glucose, galactose, sucrose, and maltose) of corn silk were analyzed using a HPLC. The total phenol contents by the particle sizes of corn silk were 2.01 mg/g, 2.02 mg/g, 2.06 mg/g, 2.26 mg/g and 2.26 mg/g, respectively. DPPH radical scavenging activities of samples were 21.00%, 21.75%, 22.90%, 24.35% and 23.67%, respectively. Antioxidative activities of Trolox and Fe(II) in corn silk were measured by ferric reducing antioxidant power (FRAP) assay and Trolox equivalent antioxidant capacity (TEAC) assay. TEAC values of samples were $2.36{\mu}mol$ TE / g dw, $2.81{\mu}mol$ TE / g dw, $3.20{\mu}mol$ TE / g dw, $3.36{\mu}mol$ TE / g dw, and $3.44{\mu}mol$ TE / g dw, respectively. FRAP values of samples were $11.67{\mu}mol$ Fe(II) / g dw, $12.80{\mu}mol$ Fe(II) / g dw, $13.43{\mu}mol$ Fe(II) / g dw, $13.85{\mu}mol$ Fe(II) / g dw and $15.95{\mu}mol$ Fe(II) / g dw, respectively. Total phenolic content and antioxidantive activities based on FRAP assay and TEAC assay were increased with decreasing particle size. In addition, DPPH radical scavenging activity was also increased. A significant correlation was also noted between DPPH radical scavenging activities and the content of phenolic compounds.

Spin-Flop of α-Fe2O3 Nano Particles (α-Fe2O3 나노 입자에서 Spin-Flop에 관한 연구)

  • Sur, Jung-Chul;Park, Chul-Jin;Choi, Jung-Wan;Gee, S.H.;Hong, Y.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.5
    • /
    • pp.169-173
    • /
    • 2004
  • We have synthesized monodispersed $\alpha$-F $e_2$ $O_3$ nano particles to investigate the spin change during the Morin transition temperature( $T_{M}$). The particle size was founded to have a very uniform distribution of 80 nm by x-ray diffraction and size dispersion analyzer. The Mossbauer spectra between the 4.2 K and the room temperature show that $T_{M}$ was shifted and the spin states of Fe ion were changed with the particle size. The Morin transition temperature of bulk usually quoted in literature is 265 K but, it decreases with the size and no transition was found at the critical size down to 4.2K. The spin direction of 80 nm sized particles are normal to the hexagonal c-axis above the $T_{M}$ and are tilted about 28~29$^{\circ}$ below $T_{M}$, which is the [110] direction of rombohedral structure.

Characterization of Chemical Composition and Size Distribution of Atmospheric Aerosols by Low-Pressure Impactor (저압 임팩터를 이용한 대기 에어로졸 입자의 입경분포 측정과 화학조성 자료의 해석)

  • 박정호;최금찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.475-486
    • /
    • 1997
  • The characteristics of atmospheric aerosols were investigated as a function of particle size and water solubility. The atmospheric aerosols were sampled with classifying into 12 size ranges by the use of Andersen low-pressure impactor. Collected aerosol particles were extracted by ultrapure water and filtered to be separated into water-soluble and insoluble components. The concentrations 12 elements in both components were determined by PIXE analysis. And the concentrations of 8 ions in the soluble component were analyzed by ion chromatography. In general, the mass size distribution of particulate matter was represented as a bimodal distribution. The mass size distributions of S$(SO_4^{2-}), K(K^+), Zn and NH_4^+$ skewed to the smaller size range and those of Si, Ca$(Ca^{2+}), Fe, Na^+ and Mg^{2+}$ skewed to the larger size range. They had roughly one peak in the fine and coarse particle region,respectively. On the other hand, the mass size distribution of Ti, Mn, Ni, Cu, $Cl^- and NO_3^-$ were represented as the bimodal distribution. Fe and Si in the aerosol particles extracted into pure water are existing in high insoluble state. Conversely, almost the whole of S is dissolved in water.

  • PDF