• Title/Summary/Keyword: Fe ion

Search Result 1,131, Processing Time 0.022 seconds

Volumetric Determination of a small amount of Iron with Potassium Ferrocyanide (훼로시안化 칼리움에 依한 鐵의 微量適定法)

  • Won, Chong-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.42-47
    • /
    • 1961
  • A titration of a small amount of iron with standard potassium ferrocyanide using potassium thiocyanate as indicator has been studied. A sample solution containing $0.1{\sim}1.0$ mg. $Fe^{3+}$ in 60 ml. is pipeted into 100 ml. Erlenmyer flask and the pH of the solution is adjusted to $1.5{\sim}3.0$ with 0.1 N or 1 N $HNO_3$ and $NH_4OH.$ To this solution one ml. of 1 M KCNS solution as indicator is added. The solution colored by iron thiocyanate complex is titrated with 1/200 M or 1/400 M standard solution of potassium ferrocyanide from a 5 ml. micro-buret. Near the end point, when the color of sample changes from deep red to green, about 20 ml. of ether is added and shake the flask vigorously. The red color is extracted to the ether layer. To settle the ether layer a few drops of ethanol is added and then standard solution is added dropwise and shake vigorously. The end point is reached when the color of the ether layer disappears owing to the quantitative formation of $Fe_4[Fe(CN)_6]_3.$ In this titration, 0.lmg. of $Fe^{3+}$ can be determined within 1.0% of titration error, provided the following optimum conditions, i.e., pH $1.5{\sim}3.0$, final concentration of KCNS indicator; $0.01{\sim}0.02M$, at room temperature. The titration found to be interfered by the presence of slightly soluble salts, stable complex forming ions and the ions which would be reduced by ferrocyanide or oxidized by ferric ion.

  • PDF

Magnetoresistance Properties of Hybrid GMR-SV Films with Nb Buffer Layers (Nb 버퍼층과 거대자기저항-스핀밸브 하이브리드 다층박막의 자기저항 특성)

  • Yang, Woo-Il;Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.3
    • /
    • pp.82-86
    • /
    • 2017
  • The IrMn based GMR-SV films with three different buffer layers were prepared on Corning glass by using ion beam deposition and DC magnetron sputtering method. The major and minor magnetoresistance curves for three different buffer layers beneath the structure of NiFe(15 nm)/CoFe(5 nm)/Cu(2.5 nm)/CoFe(5 nm)/NiFe(7 nm)/IrMn(10 nm)/Ta(5 nm) at room temperature have shown different magnetoresistance properties. When the samples were annealed at $250^{\circ}C$ in vacuum, the magnetoresistance ratio, the coercivity of pinned ferromagnetic layer, and the interlayer coupling field of free ferromagnetic layer were enhanced while the exchange bias coupling field did not show noticeable changes.

Dyeing Properties and Colour Fastness of Cotton and Silk Fabrics Dyed with Cassia tora L. Extract

  • Lee Young-Hee;Kim Han-Do
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.303-308
    • /
    • 2004
  • A natural colorant was extracted from Cassia tara L. using buffer solutions (pH: 2-11) as extractants. The dyeing solution (Cassia tara L. extract) extracted using pH 9 buffer solution was found to give the highest K/S values of dyed fabrics. Cotton and silk fabrics were dyed with Cassia tara L. extract at $60^{\circ}C$ for 60 min with pre-treatment of various metal salts as mordants. It was found that Cassia tara L. extract was polygenetic dyestuffs and its major components were anthraquinones. Studies have been made on the effects of the kind of mordant on dyeing properties and colour fastnesses of cotton and silk fabrics. The K/S of cotton fabrics increased in the order of the dyeing using $FeSO_4 >CuSO_4> ZnSO_4> MnSO_4\cong Al_2(SO_4)_3 > NiSo_4 > none$, however, the K/S of silk fabrics increased in the order of the dyeing using $FeSO_4 > CuSO_4 > ZnSO_4\cong Al_2(SO_4)_3 > MnSO_4\cong NiSO_4 > none$. It was found that the K/S values of dyed fabrics were largely affected by the colour difference $(\DeltaE)$ between mordanted fabric and control fabric. However, they were not depended on the content of mordanted metal ion of the fabrics. Mordants $FeSO_4$ and CuSO_4$ for cotton fabric, $FeSO_4,\; CuSO_4,\; and\; Al_2(S0_4)_3$ for silk fabric were found to give good light fastness (rating 4).

The Application of Plasma Nitrocarburizing and Plasma Post Oxidation Technology to the Automobile Engine Parts Shafts (자동차 엔진부품용 Shaft에 플라즈마 산질화기술 적용)

  • Jeon, Eun-Kab;Park, Ik-Min;Lee, In-Sup
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.681-686
    • /
    • 2006
  • Plasma nitrocarburising and plasma post oxidation were performed to improve the wear and corrosion resistance of S45C and SCM440 steel by a plasma ion nitriding system. Plasma nitrocarburizing was conducted for 3h at $570^{\circ}C$ in the nitrogen, hydrogen and methane atmosphere to produce the ${\varepsilon}-Fe_{2-3}$(N, C) phase. Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of $500^{\circ}C$ for 1 hour. The very thin magnetite ($Fe_3O_4$) layer $1-2{\mu}m$ in thickness on top of the $15{\sim}25{\mu}m$ ${\varepsilon}-Fe_{2-3}$(N, C) compound layer was obtained by plasma post oxidation. A salt spray test and electrochemical testing revealed that in the tested 5% NaCl solution, the corrosion characteristics of the nitrocarburized compound layer could be further improved by the application of the superficial magnetite layer. Throttle valve shafts were treated under optimum plasma processing conditions. Accelerated life time test results, using throttle body assembled with shaft treated by plasma nitrocarburising and post oxidation, showed that plasma nitrocarburizing and plasma post oxidation processes could be a viable technology in the very near future which can replace $Cr^{6+}$ plating.

A Study on the Water Treatment using Shell Waste (폐패각을 이용한 수처리에 관한 연구)

  • 이민호;정태섭
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.28-35
    • /
    • 1997
  • Adsorption properities of hcavy metals (Cd, Cu, Fe, Mn, Pb, Zn) and organic compounds (Trichloroethylene and T Tetrachroethy len려 on sh$\xi$1I( oyster and ark shell) were investigated using wat$\xi$r treatment matenals, The shell powder (m띠or C crystal structurc is calcium hydroxide) showed the preference adsorption for heavy metals in order of Mn > Zn > Fe > Cd > eu > P Pb. The high removal capacities of heavy metals arc helicved to be largely due to precipitation by foonation of metal c carhonat,잃 and hydroxides at high pH caused by the $Ca(OH)_2$ component of sl1ell, immobilizatIon of heavy metals in a solid I matrix by calcium‘ and fixation by insoluble organic materials in the oystcr and ark shell. The use of sh려I in water treatment h has the potential to bc benefIcial as a source of inexpensive matcrials‘ moreover, not only treatment of waste but also e environmcntal business including environmental-purification ceramics could be better off by utili낌ng high-valued waste and d developed puri'fication ceramics and media.

  • PDF

Identification and structural analysis of novel laccase genes in Flammulina elastica genome (Flammulina elastica의 유전체 정보기반 신규 laccase 유전자 동정 및 구조 분석)

  • Yu, Hye-Won;Park, Young-Jin
    • Journal of Mushroom
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • The genome sequence of various Flammulina species has recently been reported, thereby revealing a diverse genetic repertoire. In this study, we identified laccase genes and analyzed their structural characteristics in Flammulina elastica (F. elastica) genome. Through genome analysis and bioinformatics approaches, three laccase genes (Fe-lac1, -lac2, and -lac3) were identified, ranging from 1,548 to 1,602 bp in length. These genes contained a copper ion-binding region with ten histidine residues and one cysteine residue and a disulfide bond-forming region with four cysteine residues. Full-length cDNA sequencing analysis revealed that laccase genes contain 12 to 16 introns and signal peptides between 17 and 22 bp in the N-terminus. Structural characterization of the laccase genes identified in this study should help in better understanding the biomass decomposition of F. elastica.

Effects of chemical modification on surface characteristics and 2,4-dichlorophenol adsorption on activated carbon (활성탄 개질에 따른 표면 특성 변화가 2,4-dichlorophenol 흡착성능에 미치는 영향)

  • An, Sun-Kyung;Song, Won-Jung;Park, Young-Min;Yang, Hyeon-A;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.425-435
    • /
    • 2020
  • Numerous chemical modifications on activated carbon such as acidic conditioning, thermal treatment and metal impregnation have been investigated to enhance adsorption capacities of micropollutants in water treatment plants. In this study, chemical modification including acidic, alkaline treatment, and iron-impregnation was evaluated for adsorption of 2,4-dichlorophenol (2,4-DCP). For Fe-impregnation, three concentrations of ferric chloride solutions, i.e., 0.2 M, 0.4 M, and 0.8 M, were used and ion-exchange (MIX) of iron and subsequent thermal treatment (MTH) were also applied. Surface properties of the modified carbons were analyzed by active surface area, pore volume, three-dimensional images, and chemical characteristics. The acidic and alkaline treatment changed the pore structures but yielded little improvement of adsorption capacities. As Fe concentrations were increased during impregnation, the active adsorption areas were decreased and the compositional ratios of Fe were increased. Adsorption capacities of modified ACs were evaluated using Langmuir isotherm. The MIX modification was not efficient to enhance 2,4-DCP adsorption and the MES treatment showed increases in adsorption capacities of 2,4-DCP, compared to the original activated carbon. These results implied a possibility of chemical impregnation modification for improvement of adsorption of 2,4-DCP, if a proper modification procedure is sought.

Kinetics and mechanism of chromate reduction by biotite and pyrite (흑운모 및 황철석에 의한 6가 크롬의 환원 반응속도와 반응기작)

  • 전철민;김재곤;문희수
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.39-48
    • /
    • 2003
  • The removal of chromate from aqueous solution using finely ground pyrite and biotite was investigated by batch experiments and the kinetics and the mechanism of chromate reduction were discussed. The chromate reduction by pyrite was about hundred times faster than that by biotite and was also faster at pH 3 than at pH 4. When pyrite was used, more than 90% of initial chromate was reduced within four hours at pH 4 and within 40 min. at pH 3. However, more than 400 hours was taken for the reduction of 90% of initial chromate by biotite. The results indicate that the rate of chromate reduction was strongly depending on the amount of Fe(II) in the minerals and on the dissolution rate of Fe(II) from the minerals. The reduction of chromate at pH 4 resulted in the precipitation of (Cr, Fe)(OH))$_3$$_{ (s)}$, which is believed to have limited the concentrations of dissolved Cr(III) and Fe(III) to less than expected values. When biotite was used, amounts of decreased Fe(II) and reduced Cr(Ⅵ) did not show stoichiometric relationship, which implying there was not only chromate reduction by ferrous ions in the acidic solution but also heterogeneous reduction of ferric ions by the structural ferrous iron in biotite. However, the results from a series of the experiments using Pyrite showed that concentrations of the decreased Fe(II) and the reduced Cr(Ⅵ) were close to the stoichiometric ratio of 3:1. It was because the oxidation of pyrite rapidly created ferrous ions even in oxygenated solutions and the chromate reduction by the ferrous ions was significantly faster than ferrous ion oxygenation.

Effect of Steam-Treated Zeolite BEA Catalyst in NH3-SCR Reaction (NH3-SCR 반응에서 스팀 처리된 zeolite BEA 촉매의 영향)

  • Park, Ji Hye;Cho, Gwang Hee;Hwang, Ra Hyun;Baek, Jeong Hun;Yi, Kwang Bok
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.145-150
    • /
    • 2020
  • Nitrous oxide (N2O) is one of the six greenhouse gases, and it is essential to reduce N2O by showing a global warming potential (GWP) equivalent to 310 times that of carbon dioxide (CO2). Selective catalytic reduction (SCR) is a technology that converts ammonia into harmless N2 and H2O by using ammonia as a reducing agent to remove NOx, one of the air pollutants; the process also produces high denitrification efficiency. In this study, the Fe-BEA catalyst was steam-treated at 100 ℃ for 2 h before Fe ion exchange in the fixed bed reactor in order to investigate the effect of the steam-treated Fe-BEA catalyst on the NH3-SCR reaction. NH3-SCR reaction test of synthesized catalysts was performed at WHSV = 180 h-1, 370 to 400 ℃ in the fixed bed reactor. The Fe-BEA(100) catalyst steam-treated at 100 ℃ showed a somewhat higher activity than the Fe-BEA catalyst at 370 to 390 ℃. The catalysts were characterized by BET, ICP, NH3-TPD, H2-TPR, and 27Al MAS NMR in order to determine the cause affecting NH3-SCR activity. The H2-TPR result confirmed that the Fe-BEA(100) catalyst had a higher reduction of isolated Fe3+ than the Fe-BEA catalyst, and that the steam treatment increased the amount of isolated Fe3+ as an active species, thus increasing the activity.

The Preparation and Magnetic Properties in Ba-ferrite Film (Ba-ferrite 박막의 제조 및 자기적 특성에 관한 연구)

  • Sur, Jung-Chul;Kim, Dae-Sung;Ha, Tae-Yang;Lee, Jae-Gwang
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.64-69
    • /
    • 2003
  • Ba-ferrite thin films were prepared on Si substrate with ${\alpha}$-Fe$_2$O$_3$ underlayer by a pulsed laser deposition system and characterized by X-ray, SEM, Mossbauer spectroscopy and VSM. The appropriate conditions of pulsation in ${\alpha}$-Fe$_2$O$_3$ and Ba-ferrite were the oxygen pressure of 0.1 Torr at a substrate temperature of 400$^{\circ}C$. Ba-ferrite crystals had the forms of ellipsoidal or needle and the grains shaped the more lumps with increasing the film thickness. Mossbauer spectroscopy assured that the direction of atomic spin in Fe ion was not random but had the tendency of arrangement normal to the substrate. The coercive force and squareness of hysteresis were larger in normal than in plane to the substrate but, the magnetic saturation moment was contrary to them. The spin arrangement was strongly affected by ${\alpha}$-Fe$_2$O$_3$ underlayer and the high coercive force and squareness were influenced by this. The crystal structure was conformed to be a Magntoplumbite symmetry with the hexagonal unit cell and the lattice constant of a increased with increasing film thickness, while c decreased