• Title/Summary/Keyword: Fe ion

Search Result 1,133, Processing Time 0.03 seconds

Purification and Characterization of NAD-Dependent n-Butanol Dehydrogenase from Solvent-Tolerant n-Butanol-Degrading Enterobacter sp. VKGH12

  • Veeranagouda, Y.;Benndorf, Dirk;Heipieper, Hermann J.;Karegoudar, T.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.663-669
    • /
    • 2008
  • The solvent-tolerant bacterium Enterobacter sp. VKGH12 is capable of utilizing n-butanol and contains an $NAD^+$-dependent n-butanol dehydrogenase (BDH). The BDH from n-butanol-grown Enterobacter sp. was purified from a cell-free extract (soluble fraction) to near homogeneity using a 3-step procedure. The BDH was purified 15.37-fold with a recovery of only 10.51, and the molecular mass estimated to be 38 kDa. The apparent Michaelis-Menten constant ($K_m$) for the BDH was found to be 4 mM with respect to n-butanol. The BDH also had a broad range of substrate specificity, including primary alcohols, secondary alcohols, and aromatic alcohols, and exhibited an optimal activity at pH 9.0 and $40^{\circ}C$. Among the metal ions studied, $Mg^{2+}$ and $Mn^{2+}$ had no effect, whereas $Cu^{2+},\;Zn^{2+}$, and $Fe^{2+}$ at 1 mM completely inhibited the BDH activity. The BDH activity was not inhibited by PMSF, suggesting that serine is not involved in the catalytic site. The known metal ion chelator EDTA had no effect on the BDH activity. Thus, in addition to its physiological significance, some features of the enzyme, such as its activity at an alkaline pH and broad range of substrate specificity, including primary and secondary alcohols, are attractive for application to the enzymatic conversion of alcohols.

Synthesis and electrochemical characterization of nano structure $CeO_2$ (나노 구조의 $CeO_2$ 합성과 전기화학적 특성 분석)

  • Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Choi, Heon-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.462-462
    • /
    • 2009
  • $CeO_2$는 고체 산화물 연료전지 (SOFC, soild oxide fuel cell)의 전해질 재료와 CMP(Chemical Mechanical Polishing) 슬러리 재료, 자동차의 3원 촉매, gas sensor, UV absorbent등 여러 분야에서 사용되고 있다. 본 연구에서는 위의 활용범위 외에 $CeO_2$의 구조적 안정성과 빠른 $Ce^{3+}/Ce^{4+}$의 전환 특성을 이용하여 lithium ion battery의 anode 재료로서 전기화학적 특성을 알아보고자 실험을 실시하였다. $CeO_2$ 합성에 사용되는 전구체인 cerium carbonate의 형상 및 크기, 비표면적과 같은 물리화학적 특성이 $CeO_2$ 분말의 특성에 직접적인 영향을 주기 때문에 전구체의 합성 단계에서 입자의 특성을 조절하였다. 전구체 합성의 출발원료로 cerium nitrate hexahydrate 와 ammonium carbonate를 사용하였고 반응온도 및 농도 등을 변화시켜 입자의 형상 및 결정상을 fiber형태의 orthorombic $Ce_2O(CO_3)_2{\cdot}H_2O$와 구형의 hexagonal $CeCO_3OH$의 세리아 전구체를 합성하였다. 이를 $300^{\circ}C$에서 30분 동안 하소하여 전구체의 입자형상을 유지하는 cubic $CeO_2$를 합성하고 X-ray diffraction, FE-SEM, micropore physisorption analyzer 분석을 통하여 입자의 결정상과 형상, 비표면적 등을 비교 분석하고 $Li/CeO_2$ couple의 충,방전 용량과 수명특성을 비교 분석하여 $CeO_2$의 전기화학적 특성을 알아보았다.

  • PDF

Studies on the formation of CrN surface layer by chromizing and plasma nitriding (Chromizing과 이온 질화에 의한 CrNvyaus층 형성에 관한연구)

  • Park, H. J.;Lee, S. Y.;Yang, S. C.;Lee, S. Y.;Kim, S. S.;Han, J. G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.334-344
    • /
    • 1998
  • Yew coating pmccss t.o form a surface layer ol CrN phasc on mild steel (A81 1020!, AlSI Hi3, 1Cr-0.5Mo steel (ASTM A213 and Nickrl-base superalloy (Inconel 718) was developed. Surlaces of various alloys t,n.ateii by chromizing for the formation ol Cr diffusion layer was subsequently trcaled by plasma nitriding in order t.o form the hard CrS coating layer on the surfaces. This duplex plasma surface tri-atments of chromizing and plasma nitriding have induced a lormation of a duplex-lrcated surfacr hyer of approximat~ls 70-80 $\mu\textrm{m}$thickncss with a iargcly improved microiiardnrss up to approxiniateW 1500Hv(50gf). The main cause for the lage improvment in the surface hardncss is altribilted to [.he fact that CrN and $Fe_xN$ phases are created successfully by ccliromizins and plasma nilriding treatment. High tenipera1,urc wear resislance of the duplex-treated mild steel and HI3 steels at $600^{\circ}C$ was examined. Comparing the duplex-treated specimens with the specimens treated only by chromizing, the rcsults shovmi that, thc wear volume of the duplex-treated mild skcl and 1113 stcel aSt.er a wear test, at $600^{\circ}C$ were reduced hy a Iactor of 8 and 3, respectively. Characteristics of the CrS phase by duplrx treatment were compared with $CrN_x$,/TEX> film by ion plating and the wear behaviors of CrN film lormed by two different nroccsses arc nea.riy identical.

  • PDF

Synthesis of Concentrated Silver Nano Sol for Ink-Jet Method (잉크젯용 고농도 은 나노 졸 합성)

  • Park, Han-Sung;Seo, Dong-Soo;Choi, Youngmin;Chang, Hyunjoo;Kong, Ki-Jeong;Lee, Jung-O;Ryu, Beyong-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.670-676
    • /
    • 2004
  • The synthesis of highly concentrated silver nano sol assisted by polymeric dispersant (polyelectrolytes) for inkjet method was studied. The silver nano sol was prepared with AgNO$_3$, polyelectrolytes (HS5468cf ; polyacrylic ammonium salt), and reducing agent. The polyelectrolytes play an important role in formation of complex composed of Ag$\^$+/ion and carboxyl group (COO$\^$-/), result in preparation of highly dispersed silver nano particles. The optimization of added amount of polyelectrolytes, and concentration of silver nano sol was studied. The silver nanoparticles were evaluated by XRD, particle size/zeta potential analyzer and FE-TEM. The silver nanoparticles with the range of 10 nm in diameter were produced. The concentration of batch-synthesized silver nano sol was possible up to 40 wt%.

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • Ryu, Ji-Seung;No, Tae-Min;Kim, Jin-Seong;Jeong, Cheol-Won;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF

Source Identification of Ambient PM-10 Using the PMF Model (PMF 모델을 이용한 대기 중 PM-10 오염원의 확인)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.701-717
    • /
    • 2003
  • The objective of this study was to extensively estimate the air quality trends of the study area by surveying con-centration trends in months or seasons, after analyzing the mass concentration of PM-10 samples and the inorganic lements, ion, and total carbon in PM-10. Also, the study introduced to apply the PMF (Positive Matrix Factoriza-tion) model that is useful when absence of the source profile. Thus the model was thought to be suitable in Korea that often has few information about pollution sources. After obtaining results from the PMF modeling, the existing sources at the study area were qualitatively identified The PM-10 particles collected on quartz fiber filters by a PM-10 high-vol air sampler for 3 years (Mar. 1999∼Dec.2001) in Kyung Hee University. The 25 chemical species (Al, Mn, Ti, V, Cr, Fe, Ni, Cu, Zn, As, Se, Cd, Ba, Ce, Pb, Si, N $a^{#}$, N $H_4$$^{+}$, $K^{+}$, $Mg^{2+}$, $Ca^{2+}$, C $l^{[-10]}$ , N $O_3$$^{[-10]}$ , S $O_4$$^{2-}$, TC) were analyzed by ICP-AES, IC, and EA after executing proper pre - treatments of each sample filter. The PMF model was intensively applied to estimate the quantitative contribution of air pollution sources based on the chemical information (128 samples and 25 chemical species). Through a case study of the PMF modeling for the PM-10 aerosols. the total of 11 factors were determined. The multiple linear regression analysis between the observed PM-10 mass concentration and the estimated G matrix had been performed following the FPEAK test. Finally the regression analysis provided source profiles (scaled F matrix). So, 11 sources were qualitatively identified, such as secondary aerosol related source, soil related source, waste incineration source, field burning source, fossil fuel combustion source, industry related source, motor vehicle source, oil/coal combustion source, non-ferrous metal source, and aged sea- salt source, respectively.ively.y.

Synthesis and properties of indole based chemosensor

  • Lee, Jun-Hee;Wang, Sheng;Yu, Hyung-Wook;Kim, Hyung-Joo;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.36-36
    • /
    • 2011
  • We synthesized new dye sensor based on indole compound. Through the UV-vis absorptions, we analyzed chemosensing properties to explain metal binding properties. The peak absorptions increased at 472 nm when added metal cations($Cd^{2+}$, $Cu^{2+}$, $Hg^{2+}$, $Fe^{2+}$, $Zn^{2+}$, $Ni^{2+}$ and $Cr^{3+}$) and gradually decreased the peak at 516 nm. Thus, this UV-Vis absorption behavior clearly showed the metal binding reaction. To measure energy level of used dye sensor, HOMO/LUMO energy value was calculated with cyclovaltagramm(CV) and using computational calculation method, in which we estimated the optimum structure of dye sensor. CV and computational calculation method, both compared to find suitable geometric structure. (with almost same energy values.) From the computational calculation, dye sensor has plane structure. So, Amine and ketone in the dye sensor faced each other and makes position to bind metal cations. In addition, these positions was supported pull-push electron system and generated MLCT process, when the dye sensor was bonded with the metal cations and resulted chemosensing properties. Through the electrochemical and computational calculation method analyze, we proposed the chemosensing principles that the dye sensor bind the metal cation between ketone and amine. Finally, the formation type of metal ion bindings was determined by Job's plot measurements.

  • PDF

Purification and Enzymatic Properties of Myrosinase in Korean Mustard Seed(Brassica juncea) (한국산 겨자중 Myrosinase의 정제 및 효소학적 특성)

  • 신창식;서권일;강갑석;안철우;김용관;심기환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.4
    • /
    • pp.687-694
    • /
    • 1996
  • Myrosinase was purified from Korean mustard seed(Brassica juncea) by a sequential process of DEAE-cellulose, concanavalin A-sepharose, and Superose 6 chromatography. The molecular weight of puri-fied myrosinase(II-2) determined by SDS-polyacrylamide electrophoresis was 67KD. About a 248-fold purification for myrosinase II-2 was obtained after Superose 6 chromatography. Optimum pH of the myrosinase was 7.0 and optimum temperature of the enzyme was $3^{\circ}C.$ The enzyme was stable at pH 7.0, and below $30^{\circ}C.$ Cu, Hg and Fe ion significantly inhibited the enzyme activity, but ascorbic acid enhanced, resulting in a maximum activity by 1mM ascorbic acid. Among tile ascorbic acid ana-logues, dehydroascorbic acid inhibited the enzyme activity, whereas others showed a little effect. Reducing agents such as 2-mercaptoethanol and dithiothreitol inhibited the enzyme activity, but the reducing agents with ascorbic acid was enhanced enzyme activity.

  • PDF

A Study of Properties of Sn-3Ag-0.5Cu Solder Based on Phosphorous Content of Electroless Ni-P Layer (Sn-3Ag-0.5Cu Solder에 대한 무전해 Ni-P층의 P함량에 따른 특성 연구)

  • Shin, An-Seob;Ok, Dae-Yool;Jeong, Gi-Ho;Kim, Min-Ju;Park, Chang-Sik;Kong, Jin-Ho;Heo, Cheol-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.481-486
    • /
    • 2010
  • ENIG (electroless Ni immersion gold) is one of surface finishing which has been most widely used in fine pitch SMT (surface mount technology) and BGA (ball grid array) packaging process. The reliability for package bondability is mainly affected by interfacial reaction between solder and surface finishing. Since the behavior of IMC (intermetallic compound), or the interfacial reaction between Ni and solder, affects to some product reliabilities such as solderability and bondability, understanding behavior of IMC should be important issue. Thus, we studied the properties of ENIG with P contents (9 wt% and 13 wt%), where the P contents is one of main factors in formation of IMC layer. The effect of P content was discussed using the results obtained from FE-SEM(field-emission scanning electron microscope), EPMA(electron probe micro analyzer), EDS(energy dispersive spectroscopy) and Dual-FIB(focused ion beam). Especially, we observed needle type irregular IMC layer with decreasing Ni contents under high P contents (13 wt%). Also, we found how IMC layer affects to bondability with forming continuous Kirkendall voids and thick P-rich layer.

Development of a Receptor Methodology for Quantitative Assessment of Ambient PM-10 Sources in Suwon Area (수원지역 대기 중 PM-10 오염원의 정량평가를 위한 수용방법론의 개발)

  • 김관수;황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2001
  • A total of 328 ambient PM-10 samples was collected by a PM-10 high volume air sampler during the periods of February 1997 to February 1999 from Kyung Hee University at Suwon Campus. The samples were analyzed for their bulk chemical compositions(Cu, Fe, Pb, Zn, Al, $Na^{+}$, $NH_{4}^{+}$, $K^{+}$, $Ca^{2+]$, $Mg^{2+}$, $Cl^{-}$, $NO_{3}^{-}$, and $SO_{4}^{2-}$ by both an atomic absorption spectrophotometer and an ion chromatograph. The purpose of this study was t develop a receptor methodology for quantitative assessment of PM-10 sources. The data obtained from this study were ex-tensively examined using the target transformation factor analysis(TTFA) and the chemical mass balance (CMB). When TTFA was initially applied seasonal basis. five sources(such as automobile-related, sulfate-related, incine-ration, soil and combustion-related) were identified both during winter and fall. Since the total number and the type of sources were resolved by TTFA for the four seasons, CMB was employed to cross-check the results of TTEA. The total of six source categories identified by TTEA was intensively investigated on the basis of source profiles acquired from various source libraries established both in Korea and abroad. The results of this study showed the applicability of two popular receptor models as a new methdology for quantitative assessment PM-10 sources in Korea. Seasonally segmented data sets with the combined application of TTFA and CMB yielded a physically reasonable source apportionment result and provided a mean to increase the number of potential sources. Furthermore, this study suggested the possibility of the CMB application to ambi-ent data from Korea after identifying potential sources through traditional factor analysis.

  • PDF