• Title/Summary/Keyword: Fe electrode

Search Result 414, Processing Time 0.019 seconds

Numerical simulations on electrical resistivity survey to predict mixed ground ahead of a TBM tunnel (TBM 터널 전방 복합지반 예측을 위한 전기 비저항 탐사의 수치해석적 연구)

  • Seunghun Yang;Hangseok Choi;Kibeom Kwon;Chaemin Hwang;Minkyu Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.403-421
    • /
    • 2023
  • As the number of underground structures has increased in recent decades, it has become crucial to predict geological hazards ahead of a tunnel face during tunnel construction. Consequently, this study developed a finite element (FE) numerical model to simulate electrical resistivity surveys in tunnel boring machine (TBM) operations for predicting mixed ground conditions in front of tunnel faces. The accuracy of the developed model was verified by comparing the numerical results not only with an analytical solution but also with experimental results. Using the developed model, a series of parametric studies were carried out to estimate the effect of geological conditions and sensor geometric configurations on electrical resistivity measurements. The results of these studies showed that both the interface slope and the difference in electrical resistivity between two different ground formations affect the patterns and variations in electrical resistivity observed during TBM excavation. Furthermore, it was revealed that selecting appropriate sensor spacing and optimizing the location of the electrode array were essential for enhancing the efficiency and accuracy of predictions related to mixed ground conditions. In conclusion, the developed model can serve as a powerful and reliable tool for predicting mixed ground conditions during TBM tunneling.

Fabrication and Performance of Anode-Supported Flat Tubular Solid Oxide Fuel Cell Unit Bundle (연료극 지지체식 평관형 고체산화물 연료전지 단위 번들의 제조 및 성능)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Lee, Seung-Bok;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.283-287
    • /
    • 2007
  • KIER has been developing the anode-supported flat tubular solid oxide fuel cell unit bundle for the intermediate temperature($700{\sim}800^{\circ}C$) operation. Anode-supported flat tubular cells have Ni/YSZ cermet anode support, 8 moi.% $Y_2O_3$ stabilized $ZrO_2(YSZ)$ thin electrolyte, and cathode multi-layer composed of Sr-doped $LaSrMnO_3(LSM)$, LSM-YSZ composite, and $LaSrCoFeO_3(LSCF)$. The prepared anode-supported flat tubular cell was joined with ferritic stainless steel cap by induction brazing process. Current collection for the cathode was achieved by winding Ag wire and $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ paste, while current collection for the anode was achieved by using Ni wire and felt. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90\;cm^2$ connected in series with 12 unit bundles, in which unit bundle consists of two cells connected in parallel. The performance of unit bundle in 3% humidified $H_2$ and air at $800^{\circ}C$ shows maximum power density of $0.39\;W/cm^2$ (@ 0.7V). Through these experiments, we obtained basic technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular cell unit bundle.

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.

Effect of Fluoride Recharging on Fluoride Release and Surface Properties of Orthodontic Bracket Adhesives (불소 적용 후 교정용 브라켓 접착제 종류에 따른 불소 재흡수성과 표면 변화에 관한 연구)

  • Byeon, Seon Mi
    • Journal of dental hygiene science
    • /
    • v.18 no.4
    • /
    • pp.218-226
    • /
    • 2018
  • The aim of this study was to compare fluoride release and surface changes according to different orthodontic bracket adhesives the application of fluoride products. We used non-fluoridated composite resin Transbond fluoridated composite resins Blugloo and LightBond, resin-modified glass ionomer Rely $X^{TM}$ Luting 2, and conventional glass ionomer Fuji $I^{(R)}$. Fluoride release of five orthodontic bracket adhesives and fluoride release ability after application of three fluoride products (1.23% acidulated phosphate fluoride gel, Tooth Mousse $Plus^{(R)}$, Fluor Protector, and a toothbrush with sodium fluoride-containing toothpaste) were measured using a fluoride electrode that was connected to an ion analyzer. After 4 weeks of fluoride application, the surface roughness and surface morphology were examined using a surface roughness tester and field emission scanning electron microscopy. The amounts of fluoride release were observed not only on application of Tooth Mousse $Plus^{(R)}$ and Fluor Protector on resin-modified glass ionomer Rely $X^{TM}$ Luting 2 and Fuji $I^{(R)}$, but also during tooth brushing using fluoride-containing toothpaste. After application of Tooth Mousse $Plus^{(R)}$, except Transbond XT, the surface roughness increased, and all orthodontic adhesives showed a partial drop of micro-particle filler. On application of 1.23% acidulated phosphate fluoride gel on all orthodontic bracket adhesives, their surface roughness increased. To bond the orthodontic bracket, resin-modified glass ionomer Rely $X^{TM}$ Luting 2 and Fuji $I^{(R)}$ adhesives are highly recommended if the amount of fluoride release is considered to confer a preventative effect on dental caries, and among the fluoride products, Tooth Mousse $Plus^{(R)}$ and Fluor Protector are better than 1.23% acidulated phosphate fluoride gel, and these are expected to prevent dental caries even during tooth brushing with fluoride-containing toothpaste.