• Title/Summary/Keyword: Fe (III) ions

Search Result 95, Processing Time 0.025 seconds

Synthesis of 8-HQR and 8-HQRS Chelate Resins and It's Ion Exchange Properties (8-HQR 및 8-HQRS 킬레이트 수지의 합성과 그의 이온교환 성질)

  • Dong Won Kim;Kong Soo Kim;Hong Soo Kim
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.69-75
    • /
    • 1986
  • 8-Hydroxyquinoline-resorcinol(8-HQR) and 8-hydroxyquinoline-resorcinol-salicylic acid (8-HQRS) chelate resins were prepared by the condensation reaction of 8-hydroxyquinoline, or 8-hydroxyquinoline-salicylic acid, in the presence of resorcinol with formaldehyde. The ion exchange capacities of 8-HQR and 8-HQRS resins were 4.1 meq/g and 5.4 meq/g, respectively. The adsorption and distribution coefficient of metal ions, such as Fe(III), Cu(II), Pb(II), Co(II) and Ni(II) on these resins were discussed. The adsorption of metal ions on these chelate resins showed that the maximum adsorption condition is pH 7. And the distribution coefficient of metal ions on these resins was increased with decreasing of hydrochloric acid concentration.

  • PDF

Complexation of Polyelectroyte-Metal(II) Ion. III. The Complex Formation of Iron(II), Cobalt(II), Nickel(II) and Copper(II) with Branched Poly(ethylene imine) (BPEI) in Aqueous Solution (Polyelectrolyte-Metal(II) 이온의 착물화 (제 3 보). Iron(II), Cobalt(II) Nickel(II) 및 Copper(II)와 Branched Poly(ethylene imine) (BPEI)간의 착물생성)

  • Dong Soo Kim;Tae Sub Cho
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.456-464
    • /
    • 1986
  • The complex formation of branched poly(ethylene imine) (BPEI) with bivalent transition metal ions, such as Fe(II), Co(II), Ni(II) and Cu(II), have been investigated in terms of visible absorption and pH titration methods in an aqueous solution in 0.1M KCl at 30${\circ}$. The stability constants for M(II)-BPEI complexes was calculated with the modified Bjerrum method. The formation curves of M(II)-BPEI complexes showed that Fe(II), Co(II), Ni(II) and Cu(II) ions formed coordination compounds with four, two, two, and two ethylene imine group, respectively. In the case of Cu(II)-BPEI complex at pH 3.4 ∼ 3.8, ${\lambda}_{max}$ was shifted to the red region with a decrease in the acidity. The overall stability constants (log $K_2$) increased as the following order, Co(II) < Cu(II) < Ni(II) < Fe(II).

  • PDF

Treatment of Wastewater Containing Cu(II)-EDTA Using Ferrate in Sequencing Batch Scale System (연속회분식 반응 장치에서 Ferrate를 이용한 Cu(II)-EDTA 함유 폐수 처리 연구)

  • Kim, Hyoung-Uk;Kim, Byeong-Kwon;Lee, Seung-Mok;Yang, Jae-Kyu;Kim, Hyun-Ook;Kwan, Jung-An;Im, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.729-734
    • /
    • 2008
  • The higher valence state of iron i.e., Fe(VI) was employed for the treatment of Cu(II)-EDTA in the aqueous/waste waters. The ferrate(VI) was prepared through wet oxidation of Fe(III) by sodium hypochlorite. The purity of prepared Fe(VI) was above 93%. The stability of Fe(VI) solution decreased as solution pH decreased through self decomposition. The reduction of Fe(VI) was obtained by using the UV-Visible measurements. The dissociation of Cu(II)-EDTA complex through oxidation of EDTA using Fe(VI) and subsequent treatment of organic matter and metal ions by Fe(III) reduced from Fe(VI) in bench-scale of continuous flow reactor were studied. The removal efficiencies of copper were 69% and 79% in pH control basin and reactor, respectively, at 120 minutes as retention time. In addition, Cu(II)-EDTA in the reactor was decomplexated more than 80% after 120 minutes as retention time. From this work, a continuous treatment process for the wastewater containing metal and EDTA by employing Fe(VI) as muluti-functional agent was developed.

Transition Metal Complexes Derived From 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide Synthesis, Structural Characterization, and Biological Activities

  • Alhakimi, Ahmed N.;Shakdofa, Mohamad M.E.;Saeed, S. El-Sayed;Shakdofa, Adel M.E.;Al-Fakeh, Maged S.;Abdu, Ashwaq M.;Alhagri, Ibrahim A.
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.93-105
    • /
    • 2021
  • Mononuclear Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Fe(III), Ru(III), and UO2(II) complexes of 2-hydroxy-4-(p-tolyldiazenyl)benzylidene)-2-(p-tolylamino)acetohydrazide (H2L) were prepared by direct method. The ligand and its complexes were isolated in solid state and characterized by analytical techniques such as elemental and thermal analyses, molar conductance, magnetic susceptibility measurements and spectroscopic techniques such as UV-Visible, IR, 1H-NMR and 13C-NMR. The spectral data indicated that the ligand acted as neutral/monobasic bidentate or monobasic/dibasic tridentate ligand bonded to the metal ions through the oxygen atom of ketonic or enolic carbonyl group, azomethine nitrogen atom and deprotonated/protonated phenolic oxygen atom forming either tetragonally distorted octahedral or octahedral. Antimicrobial activities of the ligand and its complexes were evaluated against Escherichia coli, Bacillus subtilis and Aspergillus niger by well diffusion method. The results of antifungal activity showed that the Fe(III) complex (10) exhibited higher antifungal against Aspergillus niger than the other complexes. However, the results of antibacterial activity revealed that Cu(II) complex (4) is the most active against Escherichia coli while the Cu(II) complex (5) and Fe(III) complex (10) exhibited higher antibacterial effect on Bacillus subtilis than the other complexes.

Influence of Iron Phases on Microbial U(VI) Reduction

  • Lee, Seung-Yeop;Baik, Min-Hoon;Lee, Min-Hee;Lee, Young-Boo;Lee, Yong-Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.58-65
    • /
    • 2011
  • The bacterial uranium(VI) reduction and its resultant low solubility make this process an attractive option for removing U from groundwater. An impact of aqueous suspending iron phase, which is redox sensitive and ubiquitous in subsurface groundwater, on the U(VI) bioreduction by Shewanella putrefaciens CN32 was investigated. In our batch experiment, the U(VI) concentration ($5{\times}10^5M$) gradually decreased to a non-detectable level during the microbial respiration. However, when Fe(III) phase was suspended in solution, bioreduction of U(VI) was significantly suppressed due to a preferred reduction of Fe(III) instead of U(VI). This shows that the suspending amorphous Fe(III) phase can be a strong inhibitor to the U(VI) bioreduction. On the contrary, when iron was present as a soluble Fe(II) in the solution, the U(VI) removal was largely enhanced. The microbially-catalyzed U(VI) reduction resulted in an accumulation of solid-type U particles in and around the cells. Electron elemental investigations for the precipitates show that some background cations such as Ca and P were favorably coprecipitated with U. This implies that aqueous U tends to be stabilized by complexing with Ca or P ions, which easily diffuse and coprecipitate with U in and around the microbial cell.

Cyanide- and Phenoxo-Bridged Heterobimetallic Fe(III)-Mn(III) Coordination Polymer: Synthesis, Crystal Structures and Magnetic Properties

  • Zhang, Daopeng;Kong, Lingqian;Li, Yueyun;Wang, Ping;Chen, Xia
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2684-2688
    • /
    • 2014
  • Two two-dimensional cyanide- and phenoxo-bridged heterometallic M(II)-Mn(III) (M = Ni, Pd) coordination polymers $\{[Mn(saltmen)]_4[Ni(CN)_4]\}(ClO_4)_2{\cdot}CH_3OH{\cdot}H_2O$ (1) and $\{[Mn(saltmen)]_4[Pd(CN)_4]\}(ClO_4)_2{\cdot}CH_3CN{\cdot}H_2O$ (2) ($saltmen^{2-}$ = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneaminato)dianion) have been obtained by using $K_2[M(CN)_4]$ as building blocks and a salen-tpye Schiff-base manganese(III) compound as assembling segment. Single X-ray analysis reveals their isostrutural cyanide-bridged $MMn_4$ pentanuclear cationic structure. The four Schiff base manganese units of the pentanuclear entity are self-complementary through the phenoxo oxygen atoms from the neighboring complex, therefore forming cyanide- and phenoxo-bridged 2D sheet-like structure. Investigation over magnetic susceptibilities reveals the overall ferromagnetic coupling between the adjacent Mn(III) ions bridged by the phenoxo oxygen atoms with J = 2.13 and $2.21cm^{-1}$ for complexes 1 and 2, respectively.

Development of Cotton Fabrics with Prolonged Antimicrobial Action

  • Kim, Young-Mi;Han, Suk-Kyu;Lee, Keyung-Jin;Kim, Youn-Taeg
    • Archives of Pharmacal Research
    • /
    • v.12 no.2
    • /
    • pp.119-124
    • /
    • 1989
  • Cotton xanthate, which was obtained by treating cotton with carbon disulfide in alkaline solution, was treated with the solution of polyvalent metal ions to produce cotton xanthate-metal chelates. This chelation reaction was readily and simply achieved, and antimicrobial agents with suitable structures could subsequently be coupled to the chelate with ease at moderate pH values and in aqueous solution. Metal ions used in present work include Cu(II), Zn(II) and Fe(III). Tetracycline, streptomycin, neomycin and pyrithion were used as antimicrobial/antifungal agents. Antibacterial activities were measured employing ditch plate method against G(+) Staphylococcus aureus, Streptococus faecalis, and G(-) Escherichia coli, Enterobacter aerogenes, and the fungus, Aspergillus niger. All the cotton xanthate-metal-antimicrobial agent chelates exhibited activities whereas the cotton xanthate-metal chelates themselves were inactive. Considering the extensive washing procedures and results from control experiments, possibility of the involvement of physical adsorption for the binding of drugs could be excluded.

  • PDF

Determination and Preconcentration of Copper(Ⅱ) after Adsorption of Its Cupferron Complex onto Benzophenone

  • Lee, Taik-Jin;Choi, Hee-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.861-865
    • /
    • 2002
  • A sensitive method for the determination of trace copper(II) after the preconcentration by adsorbing its cupferron complex onto microcrystalline benzophenone was developed.Several experimental conditions such as the pH of sample solution,concentration of cupferron, amount of benzophenone and atirring time were optimized. Trace compper(II) in 100mL solution was chelated with $3.0\;{\times}\;10^3$ M cupferron at pH 5.0. After 0.20g benzophenone, The benzophenone adsorbing Cu-cupferron complex was filtered and then Cu-cupferron complex was desorbed in 10 mL ethanol. Copper was determined by a flame atomic absorption spectrophotomethry. The interfering effects of diverse concomitant ions were investigated. Fe(III) interfered seriously with, but the interference by Fe(III) was completely eliminated by adjusting the concentration of copferron to $5.0\;{\times}\;10^3$ M. The detection limit of this method was 8.6${\times}$10 M(5.5 ngmL$^1$). Recoveries of 97% and 96% were obtained for Cu(II) in a stream water and a brass sample, respectively. Based on the results from the experiment. this proposed technique could be applied to the determination of copper(II) in real samples.

Spectrophotometric Determination of Trace Lead(II) After Extraction of Lead-Thiosulfate Complex into Aliquat336-CHCl$_3$ and Replacement by Cu (납-티오황산 착물생성과 구리치환에 의한 미량 납(II)의 비색분석에 관한 연구)

  • Lee, Seok-Ki;Joung, Chang-Ung
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.1-5
    • /
    • 1998
  • A spectrophotometric method was developed for the acidic solution stripped after an extraction of 0.5 to 2.5 ppm of Lead(II) from 50 mL of $Na_2S_2O_3$ solution into chloroform as the ion-pairs formed between their thiosulfate complexes and alkylamine, Aliquat336. Pb(II) in the stripped solution forms an complex with DDTC in pH 7.3 buffer solution, and was developed in yellow by copper replacement. The ydlow-colored solution have the maximum absorbance at 435 nm in the measurement of absorbance by UV-Visible spectrophotometer. The interference ions such as Fe(III), Hg (II), Al(III), Co, Cu, Ni, Zn, Ca, Sn, have great effects on the extraction, but they were overcomed by the usage of adequate masking agents before an extraction. At last, a good result was obtained in applying this method to synthetic water.

  • PDF

Removal of Cu(II) ions by Alginate/Carbon Nanotube/Maghemite Composite Magnetic Beads

  • Jeon, Son-Yeo;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.117-121
    • /
    • 2010
  • The composites of alginate, carbon nanotube, and iron(III) oxide were prepared for the removal of heavy metal in aqueous pollutant. Both alginate and carbon nanotube were used as an adsorbent material and iron oxide was introduced for the easy recovery after removal of heavy metal to eliminate the secondary pollution. The morphology of composites was investigated by FE-SEM showing the carbon nanotubes coated with alginate and the iron oxide dispersed in the alginate matrix. The ferromagnetic properties of composites were shown by including iron(III) oxide additive. The copper ion removal was investigated with ICP AES. The copper ion removal efficiency increased greatly over 60% by using alginate-carbon nanotube composites.