• Title/Summary/Keyword: Fe계 벌크 비정질 합금

Search Result 3, Processing Time 0.016 seconds

A Study on the Fabrication of Fe Based Alloy Powder for Laser Welding (레이저 용접용 Fe계 합금 분말 제조에 관한 연구)

  • Lee, Jong-Jae;Son, Young-San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3315-3318
    • /
    • 2012
  • In this study, Fe-base alloy powder was prepared by gas atomizing method. Shape and crystal structure of the powder were investigated by FESEM, X-ray diffraction, and DSC. The powder was produced in a spherical shape, with a size of 45 ~ 90 ${\mu}m$. X-ray diffraction analysis revealed that the powder was fully amorphous, showing typical broad amorphous peak. From DSC analysis, Tg and Tx that are generally found in a bulk amorphous alloy were also observed in the alloy powder. Tg and Tx of the powder were $530^{\circ}C$ and $560^{\circ}C$, respectively. These results suggest us that the bulk amorphous alloy (BMG) powder prepared in this study is applicable to laser welding.

Tribological Behavior of Fe-based Bulk Amorphous Alloy in a Distilled Water Environment (수중환경에서 Fe계 벌크 비정질 합금의 트라이볼로지적 거동)

  • Jang, Beomtaek;Yi, Seonghoon
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.295-302
    • /
    • 2014
  • The tribological behavior of an Fe-based bulk amorphous alloy while sliding against a AISI 304 disc is investigated using a unidirectional pin-on-disc type tribometer in dry and distilled water environments. The rod-shaped bulk pins are fabricated by suction casting. The crystallinities of the bulk amorphous alloys before and after the friction tests are determined by X-ray diffraction. The friction coefficient and specific wear rate of the amorphous pin in the water environment are found to be twice and thrice as much as in the dry environment at a low applied pressure, respectively. However, at a higher pressure, the friction coefficient and specific wear rate are 0.4 and 1.02 mg/(Nm/s), respectively, in the water environment. A microstructure analysis shows that the worn surface of the alloy is characterized by delamination from the smooth friction surface, and thus delamination is the main wear mechanism during the friction test in dry sliding environment. In contrast, brittle fracture morphologies are apparent on the friction surface formed in distilled water environment. For the sample tested at a lower sliding speed, the XPS data from the oxide layer are similar to those of the pure element with weak suboxide peaks. For higher sliding speeds, all the main sharp peaks representing the core level binding energies are shifted to the oxide region.

Failure Behavior of Laser Cladding Layer used by Fe-based Bulk Metallic Glass (Fe계 벌크 비정질 합금을 이용한 레이저 용접층의 파손 거동)

  • Lim, Byung-Chul;Kim, Dae-Hwan;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5743-5747
    • /
    • 2015
  • In this study, Fe-based bulk amorphous alloy powder manufactured using gas atomization fabrication was used for laser welding. the fracture behavior of welding layer were analyzed. Tensile test results show that the destruction occurred immediately after the elastic deformation, After plastic deformation of the substrate, the destruction occurred. The actual maximum tensile strength of the welding layer and the substrate are 959.9MPa and 220.4MPa. welding layer were each $485.5{\pm}21$ and $197.4{\pm}14$ to the substrate and the actual microhardness, The welding layer has very high hardness. The welding layer showed a very weak fine acicular structure. The base material was shown in the micro structure appear a coarse grain. SEM observations of the fracture after the tensile test. Fracture morphology of the base metal and the welding layer showed ductile fracture and brittle fracture, respectively.