• 제목/요약/키워드: Fe/$SiO_2$ nanoparticles

검색결과 42건 처리시간 0.028초

자성 및 발광 특성이 조절 가능한 다기능 코어/중간체/쉘 나노 입자 합성 (Synthesis of the Multifunctional Core/Intermediate/Shell Nanoparticles: Tunable Magnetic and Photoluminescence Properties)

  • 김문경;김세윤;문경석;신원호;정형모
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.463-470
    • /
    • 2019
  • Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.

A New Trend of In-situ Electron Microscopy with Ion and Electron Beam Nano-Fabrication

  • Furuya, Kazuo;Tanaka, Miyoko
    • Applied Microscopy
    • /
    • 제36권spc1호
    • /
    • pp.25-33
    • /
    • 2006
  • Nanofabrication with finely focused ion and electron beams is reviewed, and position and size controlled fabrication of nano-metals and -semiconductors is demonstrated. A focused ion beam (FIB) interface attached to a column of 200keV transmission electron microscope (TEM) was developed. Parallel lines and dots arrays were patterned on GaAs, Si and $SiO_2$ substrates with a 25keV $Ga^+-FIB$ of 200nm beam diameter at room temperature. FIB nanofabrication to semiconductor specimens caused amorphization and Ga injection. For the electron beam induced chemical vapor deposition (EBI-CVD), we have discovered that nano-metal dots are formed depending upon the beam diameter and the exposure time when decomposable gases such as $W(CO)_6$ were introduced at the beam irradiated areas. The diameter of the dots was reduced to less than 2.0nm with the UHV-FE-TEM, while those were limited to about 15nm in diameter with the FE-SEM. Self-standing 3D nanostructures were also successfully fabricated.

A Synthesis of High Purity Single-Walled Carbon Nanotubes from Small Diameters of Cobalt Nanoparticles by Using Oxygen-Assisted Chemical Vapor Deposition Process

  • Byon, Hye-Ryung;Lim, Hyun-Seob;Song, Hyun-Jae;Choi, Hee-Cheul
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.2056-2060
    • /
    • 2007
  • A successful combination of “oxygen-assisted chemical vapor deposition (CVD) process” and Co catalyst nanoparticles to grow highly pure single walled carbon nanotubes (SWNTs) was demonstrated. Recently, it was reported that addition of small amounts of oxygen during CVD process dramatically increased the purity and yield of carbon nanotubes. However, this strategy could not be applied for discrete Fe nanoparticle catalysts from which appropriate yields of SWNTs could be grown directly on solid substrates, and fabricated into field effect transistors (FETs) quite efficiently. The main reason for this failure is due to the carbothermal reduction which results in SiO2 nanotrench formation. We found that the oxygen-assisted CVD process could be successfully applied for the growth of highly pure SWNTs by switching the catalyst from Fe to Co nanoparticles. The topological morphologies and p-type transistor electrical transport properties of the grown SWNTs were examined by using atomic force microscope (AFM), Raman, and from FET devices fabricated by photolithography.

Photoelectrochemical Water Oxidation and $CO_2$ Conversion for Artificial Photosynthesis

  • Park, Hyunwoong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.70-70
    • /
    • 2013
  • As the costs of carbon-footprinetd fuels grow continuously and simultaneously atmospheric carbon dioxide concentration increases, solar fuels are receiving growing attention as alternative clean energy carriers. These fuels include molecular hydrogen and hydrogen peroxide produced from water, and hydrocarbons converted from carbon dioxide. For high efficiency solar fuel production, not only light absorbers (oxide semiconductors, Si, inorganic complexes, etc) should absorb most sunlight, but also charge separation and interfacial charge transfers need to occur efficiently. With this in mind, this talk will introduce the fundamentals of solar fuel production and artificial photosynthesis, and then discuss in detail on photoelectrochemical (PEC) water splitting and CO2 conversion. This talk largely divides into two section: PEC water oxidation and PEC CO2 reduction. The former is very important for proton-coupled electron transfer to CO2. For this oxidation, a variety of oxide semiconductors have been tested including TiO2, ZnO, WO3, BiVO4, and Fe2O3. Although they are essentially capable of oxidizing water into molecular oxygen, the efficiency is very low primarily because of high overpotentials and slow kinetics. This challenge has been overcome by coupling with oxygen evolving catalysts (OECs) and/or doping donor elements. In the latter, surface-modified p-Si electrodes are fabricated to absorb visible light and catalyze the CO2 reduction. For modification, metal nanoparticles are electrodeposited on the p-Si and their PEC performance is compared.

  • PDF

Synthesis of diameter-controlled carbon nanotubes via structural modification of Al2O3 supporting layer

  • Kim, Soo-Youn;Song, Woo-Seok;Kim, Min-Kook;Jung, Woo-Sung;Choi, Won-Chel;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.286-286
    • /
    • 2010
  • The lack of homogeneously sized single-walled carbon nanotubes (SWNTs) hinders their many applications because properties of SWNTs, in particular electrical conduction, are highly dependent on the diameter and chirality. Therefore, the preferential growth of SWNTs with predetermined diameters is an ultimate objective for applications of SWNTs-based nanoelectronics. It has been previously emphasized that a catalyst size is the one crucial factor to determine the CNTs diameter in chemical vapor deposition (CVD) process, giving rise to several attempts to obtain size-controllable catalyst by diverse methods, such as solid supported catalyst, metal-containing molecular nanoclusters, and nanostructured catalytic layer. In this work, diameter-controlled CNTs were synthesized using a nanostructured catalytic layer consisting of Fe/Al2O3/Si substrate. The CNTs diameter was controlled by structural modification of Al2O3 supporting layer, because Al2O3 supporting layer can affect agglomeration phenomenon induced by heat-driven surface diffusion of Fe catalytic nanoparticles at growth temperature.

  • PDF

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • 제18권6호
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.

SiO2\TiO2 박막에 의한 투명 발수 반사방지 코팅 (Transparent Hydrophobic Anti-Reflection Coating with SiO2\TiO2 Thin Layers)

  • 노영아;김기출
    • 한국산학기술학회논문지
    • /
    • 제18권3호
    • /
    • pp.1-6
    • /
    • 2017
  • 태양전지의 셀을 보호하기 위한 커버 글라스에는 반사방지 코팅 및 셀프클리닝과 같은 기능성 코팅이 적용되어왔다. 일반적으로 메조포러스 실리카를 이용한 반사방지 코팅은 빛의 투과를 증가시키며, $TiO_2$ 광촉매 필름은 셀프클리닝 코팅에 적용되어왔다. 본 연구에서는 $SiO_2/TiO_2$ 박막 코팅에 의한 투명 발수 반사방지 및 셀프클리닝 코팅을 sol-gel 공정과 dip-coating 공정으로 글라스 기판 위에 제조하였다. 기능성 코팅의 표면형상은 전계방출 주사전자현미경과 원자힘 현미경으로 분석하였고, 광학적 특성은 UV-visible 분광광도계로 분석하였다. 필름의 발수특성은 접촉각 측정으로 확인하였다. 그 결과 $TiO_2$ 필름은 기판인 슬라이드 글라스와 비슷한 수준의 높은 광 투과율을 나타내었다. 일반적으로 $TiO_2$ 나노입자는 필름에서 반사를 증가시키며, 결과적으로 투과율의 저하를 가져온다. 하지만 본 연구의 $SiO_2/TiO_2$ 박막으로 이루어진 기능성 코팅은 $110^{\circ}$의 접촉각을 나타내었으며, 파장 550 nm에서 기판인 슬라이드 글라스의 투과율보다 2.0% 증가한 93.5%의 광 투과율 특성을 나타내었다.

Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V.;Gareev, K.G.;Ionin, S.A.;Ryzhov, V.A.;Bogachev, Yu.V.;Klimenkov, B.D.;Kononova, I.E.;Moshnikov, V.A.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.221-228
    • /
    • 2015
  • Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.

Colloidal Photonic Crystals with Quasi-Amorphous Structure: Angle-Independent Electrically Tunable Full Color Photonic Pixels

  • 김대현;정재연;지승욱;강영종
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.278-278
    • /
    • 2010
  • Electrically tunable photonic band gap (PBG) materials based on crystalline structures have been developed for active components of display. Despite considerable advances, the intrinsic drawbacks of the crystalline PBG materials such as the strong angle dependent hue and difficulty of fabricating defect-free structures in large area have yet to be addressed for their practical applications. Here we report quasi-amorphous colloidal structures exhibiting angle-independent photonic colors in response to the electric stimuli. Moderately polydisperse colloidal Fe3O4@SiO2 nanoparticles dispersed in organic solvents exclusively form quasi-amorphous photonic materials at sufficiently high concentrations (> 30 wt%), and which reversibly reflect incident light in visible region ($\lambda$ peak = 490~655 nm) in response to the relatively low bias voltage (0~4 V). We show the angle-independent tunable photonic colors with the fast response time (50~170 ms) due to the isotropic nature of quasi-amorphous structures. Conventional vacuum injection technique is applicable for fabricating flexible full color photonic display pixels with various pre-defined shapes.

  • PDF