• Title/Summary/Keyword: Fe(II) Ion

Search Result 134, Processing Time 0.022 seconds

A Selective and Sensitive Determination Method of Fe(II) ion using DTPA in Luminol-H2O2 System (Fe(II)-DTPA 착물의 촉매작용을 이용한 루미놀 화학발광 시스템의 선택적 Fe(II) 정량)

  • Lee, Sang Hak;Kim, Kyung Min;Hong, Suk Joo;Kim, Gyu-Man;Jo, Hae Jin;Jang, Taek Gyun;Kim, Young Ho
    • Applied Chemistry
    • /
    • v.15 no.2
    • /
    • pp.113-116
    • /
    • 2011
  • A sensitive and selective determination method of Fe(II) ion by luminol-H2O2 system using a chelating reagent has been presented. A metal ion-chelating ligand complex such as Fe(II)-diethylenetriamine pentaacetic acid (DTPA) produced higher chemiluminescence (CL) intensity as well as longer lifetime in luminol-H2O2 system than metal exist as free ions. Furthermore, the catalytic activity of Cu(II) and Pb (II) complexes with chelating reagents in luminol-H2O2 system was lost since chelating reagents act as a masking agent although free Cu(II) and Pb(II) ions have high catalytic activity. On the optimized conditions, the calibration curve of Fe(II) ion was linear over the range from 1.0×10-7 to 2.0×10-5 M with correlation coefficient of 0.996. The detection limit was calculated to be 4.0×10-8 M.

Studies on Drug Analysis by Metal Chelate Ion. I. Colorimetric Determination of Nicotinamide with Dimethyglyoxime-Fe (II) (금속 chelate ion에 의한 의약품 정량에 관한 연구(I) Dimethylglyoxime-Fe(II)에 의한 Nicotinamide의 비색정량)

  • 이왕규
    • YAKHAK HOEJI
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 1969
  • Nicotinamide Complex Compound was not formed in simple alkaline solution under two to one molar ratio of dimethyglyoxime and Fe (II), but it was formed with ammonia or pyridine under the same molar ratio. Based on this fact, nicotinamide solution was added into dimethyglyoxime-Fe (II) complex solution, and the chelation product was extracted with chloroform. The extraction was Completed in a range of pH 8.4-11.0. The chloroform solution shows stability and maximum absorption at 516 m${\mu}$.

  • PDF

Formation of surface mediated iron colloids during U(VI) and nZVI interaction

  • Shin, Youngho;Bae, Sungjun;Lee, Woojin
    • Advances in environmental research
    • /
    • v.2 no.3
    • /
    • pp.167-177
    • /
    • 2013
  • We investigated that removal of aqueous U(VI) by nano-sized Zero Valent Iron (nZVI) and Fe(II) bearing minerals (controls) in this study. Iron particles showed different U(VI) removal efficiencies (Mackinawite: 99%, green rust: 95%, nZVI: 91%, magnetite: 87%, pyrite: 59%) due to their different PZC (Point of Zero Charge) values and surface areas. In addition, noticeable amount of surface Fe(II) (181 ${\mu}M$) was released from nZVI suspension in 6 h and it increased to 384 ${\mu}M$ in the presence of U(VI) due to ion-exchange of U(VI) with Fe(II) on nZVI surface. Analysis of Laser-Induced Breakdown Detection (LIBD) showed that breakdown probabilities in both filtrates by 20 and 200 nm sizes was almost 24% in nZVI suspension with U(VI), while 1% of the probabilities were observed in nZVI suspension without U(VI). It indicated that Fe(II) colloids in the range under 20 nm were generated during the interaction of U(VI) and nZVI. Our results suggest that Fe(II) colloids generated via ion-exchange process should be carefully concerned during long-term remediation site contaminated by U(VI) because U could be transported to remote area through the adsorption on Fe(II) colloids.

Studies on Drug Analysis by Metal Chelate Ion II. Colorimetric Determination of Sulfa-Drugs with Dimethylglyoxime-Fe(II) (금속 chelate ion에 의한 의약품 정량에 관한 연구 (II) Dimethyglyoxime Fe(II)에 의한 Sulfa 제의 비색정량)

  • 이왕규;옥치완;김박광
    • YAKHAK HOEJI
    • /
    • v.13 no.1
    • /
    • pp.28-32
    • /
    • 1969
  • For the colorimetric determination of Sulfa-drugs by means of solvent extraction, the sample solutions were added into dimethylglyoxime-Fe(II) complex solution, and extracted with pyridine-chloroform mixture (1:50) is a range of pH 7.5-8.5. The extracted solution shows stability and maximum absorption at 402m${\mu}$.

  • PDF

Differential Pulse Voltammetric Determination of Iron(II) ion with a Nafion-Ethylenediamine Modified Glassy Carbon Electrode (Nafion-ethylenediamine이 수식된 유리탄소전극에 의한 시차펄스전압전류법으로 철(II) 이온의 정량)

  • Kyong Wone Kim;Hee Cheol Kim;Sung-Hyun Kim;Byung Ho Park;Yeon Hee Kim;Kyong Nam Kim;Yong Chun Ko
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.115-120
    • /
    • 2003
  • Determination of iron(II) ion with a perfluorinated sulfonated polymer(nafion)-ethylenediamine(en) modified glassy carbon electrode was studied. It was based on the chemical reactivity of an immobilized layer(nafion-en) to yield complex $[Fe(en)_3]^{+2}$. The oxidation peak potential by differential pulse voltammetry(DPV) was observed at 0.340${\pm}$0.015 V(vs. Ag/AgCl). The linear calibration curve was obtained in iron(II) ion concentration range $5{\times}10^{-6}{\sim}0.2{\times}10^{-3} M(0.28{\sim}11.17\; mg/L)$, and the detection limit(3s) was $1.89{\times}10^{-5}$M(1.056 mg/L).

Effect of trace amount of ferrous and ferric ions on the dissolution of iron plate in magnetically treated 3% sodium chloride solution

  • Chiba, Atsushi;Ohki, Tomohiro;Wu, Wen-Chang
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • A 3% NaCl solution of 1 $dm^3$ circulated with 1.5 $dm^3/min$ by a pump for 24 h in the presence of magnetic field. An iron plate immersed in a $100cm^3$ of test solution for 24 h. The rest potential and pH on surface fixed after 3 h. Containing 0~120 ppm of Fe(II) ion, the dissolution in the magnetically treated solution rose comparing with that in the non-magnetically treated solution. The dissolution amount reached to maximum at 50 ppm, then fixed in the non-magnetically treated solution. When Fe(II) ion existed in the magnetically treated solution, dissolution accelerated a little. In the non-magnetic treated solution containing 10~125 ppm of Fe(III) ion existed, the dissolution accelerated. The dissolution amounts reached to maximum at 50 ppm, then decreased from maximum value. In the magnetically treated solution, the dissolution amounts reached to minimum until 50 ppm, then increased from minimum value. The dissolution amounts affected larger with increasing of magnetic flux density. Fe(II), Fe(III) ions and magnetic treatment affected to formation of $Fe(OH)_2$ and/or $Fe_3O_4$ films. The magnetically treated effects memorized about one month.

Metal Sequestering by a Poly(ethylenimine)-Sephadex G-25 Conjugate Containing 2,2'-Dihydroxyazobenzene

  • Gwan, Won Jong;Yu, Chang Eun;Jang, Won Seok;No, Yeong Seok;Seo, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2000
  • 2,2¢-Dihydroxyazobenzene (DHAB) was attached to poly(ethylenimine) (PEI) to obtain DHAB-PEI. Spectral titration revealed that uranyl, Fe(III), Cu(II), and Zn(II) ion form 1 : 1-type complexes with DHAB attached to PEI. Formation constants for the metal complexes formed by the DHAB moieties of DHAB-PEI were mea-sured by using various competing ligands. The results indicated thatthe concentrations of uranyl, Fe(III), and Cu(II) ions can be reduced to 10 -16 -10 -23 M at p 8 with DHAB-PEI when the concentration of the DHAB moiety is 1 residue M. By using cyanuric chloride as the coupling reagent, DHAB-PEI was immobilized on Sephadex G-25 resin to obtain DHAB-PEI-Seph. Binding of uranyl,Fe(III), Cu(II), and Zn(II) ion by DHAB-PEI-Seph was characterized by using competing ligands. A new method has been developed for characteriza-tion of metal sequestering ability of a chelating resin. Formation constants and metal-binding capacity of two sets of binding sites on the resin were estimated for each metal ion. DHAB-PI-Seph was applied to recovery of metals such as uranium,Fe, Cu, Zn, Pb, V, Mn, and W from seawater. The uranium recovery from seawaterby DHAB-PEI-Seph does not meet the criterion for economical feasibility partlydue to interference by Fe and Zn ions. The seawater used in the experiment was contaminated by Fe and Zn and, therefore, the efficiency of uranium extractionfrom seawater with DHAB-PEI-Seph could be improved if the experiment is carried out in a cleaner sea.

Determination of Fe(II) ion and Fe(III) ion by Chemiluminescence Method (화학발광법을 이용한 Fe(Ⅱ)이온과 Fe(Ⅲ)이온의 정량)

  • Lee, Sang Hak;Nam, Myeong Sik
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.509-514
    • /
    • 2002
  • A method to determin Fe(II) and Fe(III) ion in aqueous solution by chemiluminescence method using a stopped flow system has been studied. The method is based on the increased chemiluminescence intensity with the addition of Fe(III) ion to a solution of lucigenin and hydrogen peroxide. The effects of KOH concentration, flow rate of reagents, $H_2O_2$ concentration and citric acid concentration used for the masking of Fe(II) ion on the chemilu-minescence intensity have been investigated. The calibration curve for total Fe was linear over the range from 1.0${\times}$$10^{-6}$ M to 1.0${\times}$$10^{-4}$M, coefficient of correlation was 0.996 and the detection limit was 1.0${\times}$$10^{-7}$M under the optimal exper-imental conditions of 4.0 M, 2.0 M, 3.5 mL/min for the concentration of $H_2O_2,$ KOH and flow rate of reagents, respec-tively. The calibration curve for Fe(Ⅲ) was linear over the range from 1.0${\times}$$10^{-6}$M to 1.0${\times}10^{-4}$ M, the coefficient of correlation was 0.997 and the detection limit was 5.0${\times}$$10^{-7}$M under the optimal experimental conditions.

Development of an Analytical Method for the Spectrometric Simultaneous Determination of Fe2+ and Fe3+ Ions Using a Technique of Flow Injection Analysis (흐름주입분석기법을 이용한 Fe2+ 이온과 Fe3+이온의 광학적 동시정량을 위한 분석기법의 개발)

  • Hwang, Hun;Kim, Jin Ho
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.5
    • /
    • pp.419-437
    • /
    • 2002
  • An analytical method for the spectrometric simultaneous determination of the individual ions in the mix-tures of $Fe^{2+}$ and $Fe^{2+}$ ions utilizing a technique of flow injection analysis has been developed. The method was based on the oxidation reaction between $Fe^{2+}$ ion and $H_2O_2$ in an acidic medium and the subsequent formation of a red Fe$(SCN)^{3-x}_x$ ion by the complexation reaction between $Fe^{2+}$ ion and $SCN^-$ ion. Unlike the conventional methods which require separate processes for the pre-treatment of the sample solution, the current method uses the same FIA system for the pre-treatment and the analysis of the sample. The detection limit for the determination of $Fe^{2+}$ ion was found to be 6.00${\times}10^{-7}$M.

Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review

  • Lee, Changha
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • Reduced forms of iron, such as zero-valent ion (ZVI) and ferrous ion (Fe[II]), can activate dissolved oxygen in water into reactive oxidants capable of oxidative water treatment. The corrosion of ZVI (or the oxidation of (Fe[II]) forms a hydrogen peroxide ($H_2O_2$) intermediate and the subsequent Fenton reaction generates reactive oxidants such as hydroxyl radical ($^{\bullet}OH$) and ferryl ion (Fe[IV]). However, the production of reactive oxidants is limited by multiple factors that restrict the electron transfer from iron to oxygen or that lead the reaction of $H_2O_2$ to undesired pathways. Several efforts have been made to enhance the production of reactive oxidants by iron-induced oxygen activation, such as the use of iron-chelating agents, electron-shuttles, and surface modification on ZVI. This article reviews the chemistry of oxygen activation by ZVI and Fe(II) and its application in oxidative degradation of organic contaminants. Also discussed are the issues which require further investigation to better understand the chemistry and develop practical environmental technologies.