• Title/Summary/Keyword: Fe(II)와 Fe(III)이온 정량 실험

Search Result 2, Processing Time 0.018 seconds

Spectrophotometric Quantitatification of Fe(II) and Fe(III) Ions Using N,N'-bis(4-methoxysalicylidene) phenylendiamine (N,N'-bis(4-methoxysalicylidene) phenylendiamine를 이용한 Fe(II) 및 Fe(III) 이온의 분광학적 분석)

  • Kim, Sun-Deuk;Seol, Jong-Min
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.463-471
    • /
    • 2011
  • A novel $N_2O_2$ Schiff base ligand, N,N'-bis(4-methoxysalicylidene)phenylendiamine(4-$CH_3O$-Salphen), has been synthesized. It has been revealed that the compound is very useful for the spectrophotometric quantification of Fe(II) and Fe(III) ions in aqueous solutions, such as mineral water, hot spring water, sea water, and waste water. The optimum conditions for the quantitative analysis are the followings; [4-$CH_3O$-Salphen]=$4.0{\times}10^{-4}\;M$, DMF/$H_2O$=70/30(v/v), pH=3.4~3.8, T= at $55^{\circ}C$, and prereaction time=1.0 hr. The sample of single valence state was prepared by the preliminary oxidation or reduction using $H_2O_2$ ($5.0{\times}10^{-4}\;M$) and $NH_2OH{\cdot}HCl$ ($5.0{\times}10^{-4}\;M$). The quantitative analyses of Fe(II) and Fe(III) ion were performed by measuring the absorbance at 434 nm and 456 nm, respectively. The estimated mean values agreed well with the standard values within the range of 2.00~6.90%. The limit of detection was 27.9 ng/mL for Fe(II) and 55.8 ng/mL for Fe(III).

Spectrofluorimetric Determination of Fe(Ⅲ) with 4,5-Dihydroxy-1,3-Benzenedisulfonic Acid (4,5-Dihydroxy-1,3-Benzenedisulfonic Acid를 이용한 Fe(Ⅲ)의 분광형광법 정량)

  • Kim, Hye Seon;Choi, Hee Seon
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.423-429
    • /
    • 1999
  • A spectrofluorimetric method for the determination of Fe(III) in aqueous solution with 4,5-dihydroxy-1,3-benzenedisulfonic acid(Tiron) as a fluorimetric reporter was developed. Tiron, which is very soluble in water,is a good fluorimetric reagent. However, when Tiron was complexed with Fe(III), the fluorescent intensity was decreased proportionally with the concentration of Fe(III) by a quenching effect. The excitation and fluorescene wavelength of Tiron showing the quenching effect by Fe(III) at pH 4.5 were 312 nm and 341 nm, respectively. The highest sensitivities were shown at Tiron concentration of $1.0{\times}10^{-2}M$. To enhance the quenching effect, the Fe(III)-Tiron complex solution was heated to 80$^{\circ}C$ for 90 minutes. As for Fe(III), the most interfering ion was Cu(II). The interference effects could be mostly eliminated by pH adjustment or by adding EDTA. The concentration ranges showing the linear response to Fe(III) was from $5.0{\times}10^{-7}M\;to\;6.0{\times}10^{-5}M$ With this proposed method, the detection limits of Fe(III) was $2.8{\times}10^{-6}M$. Recovery of Fe(lII) in a synthetic sample was almost quantitative. Based on experimental results, it is proposed that the above technique can be applied to the practical determination of Fe(III).

  • PDF