• Title/Summary/Keyword: Faying Interface

Search Result 5, Processing Time 0.015 seconds

Temperature Dependent Behavior of Thermal and Electrical Contacts during Resistance Spot Welding

  • Kim, E.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The thermal contact conductance at different temperatures and with different electrode forces and zinc coating morphology was measured by monitoring the infrared emissions from the one dimensionally simulated contact heat transfer experiments. The contact heat transfer coefficients were presented as a function of the harmonic mean temperature of the two contacting surfaces. Using these contact heat transfer coefficients and experimentally measured temperature profiles, the electrical contact resistivities both for the faying interface and electrode-workpiece interface were deduced from the numerical analyses of the one dimension simulation welding. It was found that the average value of the contact heat transfer coefficients for the material with zinc coating (coating weight from 0 g/$mm^2$to 100 g/$mm^2$) ranges from 0.05 W/$mm^2$$^{\circ}C$ to 2.0 W/$mm^2$$^{\circ}C$ in the temperature range above 5$0^{\circ}C$ harmonic mean temperature of the two contacting surfaces. The electrical contact resistivity deduced from the one dimension simulation welding and numerical analyses showed that the ratio of electrical contact resistivity at the laying interface to the electrical contact resistivity at the electrode interface is smaller than one far both bare steel and zinc coated steel.

  • PDF

Simulation of heat flow for rectangular electrodes (사각형 전극에서의 열유동 해석)

  • 신윤섭;박수웅;나석주
    • Journal of Welding and Joining
    • /
    • v.8 no.1
    • /
    • pp.62-69
    • /
    • 1990
  • Being focused on the recent studies that the fatigue strength of resistance spot weldmentes can be improved by using ellipsoidal weld nuggets, the voltage and temperature distribution in resistance spot weldments were simulated for the various rectangular electrodes which had the different aspect ratio of the contact area. Because the electrode shape was not axi-symmetric, the solution domain for simulation should be three dimensional. A series of experiments were carred out to verify the analytically obtained temperature distribution in the weldment. From the calculational and experimental results, it could be revealed that the nugget took the form of ellipsoid, while both results showed a considerable discrepancy for the high aspect ratio.

  • PDF

Effect of Spot Welding Conditions on Spatter and Mechanical Strength Properties (스패터 및 기계적 강도특성에 미치는 점용접 조건의 영향)

  • 서도원;윤호철;전양배;임재규
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.70-75
    • /
    • 2003
  • Spot welding is a process that sheet metals are joined in one or more spot by heating at the faying interface. In this process, the spatter is dispersed from melted area. It has been reported that spatter generation has adverse effects on weld quality. However, no systematic study has been carried out to find out its effect on weld quality in resistance spot welding processes. In this study, specially designed specimen are used to perform experimental investigation of spatter generation and its effect. Major finding of this study show trends in tensile-shear strength for various amounts of spatter generated during spot welding process. Thus, optimum welding conditions are proposed in view of spatter generation and tensile-shear strength. (Received December 11, 2002)

A comparative study of constant current control and adaptive control on electrode life time for resistance spot welding of galvanized steels (용융아연도금 강판 저항 점 용접 시 정전류 및 적응제어 적용에 따른 연속타점 특성 평가 및 고찰)

  • Seo, Jeong-Chul;Choi, Il-Dong;Son, Hong-Rea;Ji, Changwook;Kim, Chiho;Suh, Sung-Bu;Seo, Jinseok;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.47-55
    • /
    • 2015
  • With using adaptive control of the resistance spot welding machine, the advantage on electrode life time for galvanized steels has been addressed. This study was aimed to evaluate the electrode life time of galvanized steels with applying the constant current control and the adaptive control resistance spot welding process for a comparison purpose. The growth in diameter of electrode face was similar for both the constant current and the adaptive control up to 2000 welds. The button diameter was decreased with weld numbers, however, sudden increase in button diameter with use of the adaptive control after 1500 welds was observed. The peak load was continuously decreased with increasing number of welds for both the constant current and the adaptive control. The current compensation during a weld was observed with using the adaptive control after 1800 welds since the ${\beta}$-peak on dynamic resistance curve was detected at later weld time. The current compensation with adaptive control during resistance spot welding enhanced the nugget diameter at the faying interface of steel sheets and improved the penetration to thinner steel sheet.

Characterization of Partial Interfacial Fracture on Resistance Spot-Welded TRIP Steels for Automotive Applications (자동차 차체용 TRIP강판의 저항 점용접부 Partial Interfacial Fracture 특성에 관한 연구)

  • Choi, Chul Young;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.136-145
    • /
    • 2012
  • Resistance spot welding of TRIP780 steels was investigated to enhance understanding of weld fracture mode after tensile shear testing (TST) and L-shape tensile testing (LTT). The main failure mode for spot welds of TRIP780 steels was partial interfacial fracture (PIF). Although PIF does not satisfy the minimum button diameter (4${\surd}$t) for acceptable welds, it shows enough load carrying capacity of resistance spot welds for advanced high strength steels. In the analysis of displacement controlled L-shape tensile test results, cracks initiated at the notch of the faying surface and propagated through the interface of weldments, and finally, cracks change path into the sheet thickness direction. Use of the ductility ratio and CE analysis suggested that the occurrence of PIF is closely related to high hardness and brittle welds, which are caused by fast cooling rates and high chemical compositions of TRIP steels. Analysis of the hold time and weld time in a welding schedule demonstrated that careful control of the cooling rate and the size of a weld nugget and the HAZ zone can reduce the occurrence of PIF, which leads to sound welds with button fractures (BFs).