• Title/Summary/Keyword: Faults diagnosis of induction motors

Search Result 63, Processing Time 0.022 seconds

Oxidation Models of Rotor Bar and End Ring Segment to Simulate Induction Motor Faults in Progress

  • Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.163-172
    • /
    • 2011
  • Oxidation models of a rotor bar and end ring segment in an induction motor are presented to simulate the behavior of an induction machine working with oxidized rotor parts which are modeled as rotor faults in progress. The leakage inductance and resistance of the rotor parts arc different from normal values because of the oxidation process. The impedance variations modify the current density and magnetic flux which pass through the oxidized parts. Consequently, it causes the rotor asymmetry which induces abnormal harmonics in the stator current spectra of the faulty machine. The leakage inductances of the oxidation models are derived by the Ampere's law. Using the proposed oxidation models, the rotor bar and end ring faults in progress can be modeled and simulated with the motor current signature analysis (MCSA). In addition, the oxidation process of the rotor bar and end ring segment can motivate the rotor asymmetry, which is induced by electromagnetic imbalances, and it is one of the major motor faults. Results of simulations and experiments are compared to each other to verify the accuracy of the proposed models. Experiments are achieved using 3.7 kW, 3-phase, and squirrel cage induction motors with a motor drive inverter.

Fault Detection and Diagnosis of Faulty Bearing and Broken Rotor Bar of Induction Motors Based on Dynamic Time Warping (DTW를 이용한 유도전동기 베어링 및 회전자봉 고장진단)

  • Lee, Jae-Hyun;Bae, Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.95-102
    • /
    • 2007
  • The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis and prognosis are of increasing importance. This study introduces a technique to detect and identify faults in induction motors. Stator currents were measured and stored by time domain. The time domain is not suitable for representing current signals, so wavelet transform is used to convert the signals onto frequency domain. The raw signals can not show the significant feature, therefore difference values between the signal of the health conditions and that of the fault conditions are applied. The difference values were transformed by wavelet transform and the features are extracted from the transformed signals. The dynamic time warping method was used to identify the fault type. This study describes the results of detecting fault using wavelet analysis.

Neural Network Based Expert System for Induction Motor Faults Detection

  • Su Hua;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.929-940
    • /
    • 2006
  • Early detection and diagnosis of incipient induction machine faults increases machinery availability, reduces consequential damage, and improves operational efficiency. However, fault detection using analytical methods is not always possible because it requires perfect knowledge of a process model. This paper proposes a neural network based expert system for diagnosing problems with induction motors using vibration analysis. The short-time Fourier transform (STFT) is used to process the quasi-steady vibration signals, and the neural network is trained and tested using the vibration spectra. The efficiency of the developed neural network expert system is evaluated. The results show that a neural network expert system can be developed based on vibration measurements acquired on-line from the machine.

Fault Diagnosis of Voltage-Fed Inverters Using Pattern Recognition Techniques for Induction Motor Drive (패턴인식 기법을 이용한 유도전동기 구동용 전압형 인버터의 고장진단)

  • Park, Jang-Hwan;Park, Sung-Moo;Lee, Dae-Jong;Kim, Dong-Hwa;Chun, Myung-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.75-84
    • /
    • 2005
  • Since an unexpected fault of induction motor drive systems can cause serious troubles in many industrial applications, which the technique is required to diagnose faults of a voltage-fed PWM inverter for induction motor drives. The considered fault types are rectifier diodes, switching devices and input terminals with open-circuit faults, and the signal for diagnosis is derived from motor currents. The magnitude of dq-current trajectory is used for the feature extraction of a fault and PCA LDA are applied to diagnose. Also, we show results with respect to the execution time because of the possibility to use that a diagnosis software is embedded in the controllers of medium and small size induction motors drive for real-time diagnosis. After we performed various simulations for the fault diagnosis of the inverter, the usefulness of proposed algerian was verified.

A Study on Bearing Diagnosis of Induction Motor using Torque Signature (유도 전동기의 토크신호를 이용한 베어링 고장진단 연구)

  • Hong, Young-Hee;Seon, Hyun-Gyu;Park, Jin-Yeub
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.638_639
    • /
    • 2009
  • The motors faults including mechanical rotor imbalances, broken rotor bar, bearing failure and eccentricities problems are reflected in electric, electromagnetic and mechanical quantities. This paper presents a study and the practical implementation of an induction motor for reactor containment fan cooler in nuclear power plant with Electric Signature Analysis(ESA). The results obtained present a good degree of reliability hence; the ESA predictive maintenance tools enable a pro-active evaluation of induction motors performance prior to failure.

  • PDF

A study in fault detection and diagnosis of induction motor by clustering and fuzzy fault tree (클러스터링과 fuzzy fault tree를 이용한 유도전동기 고장 검출과 진단에 관한 연구)

  • Lee, Seong-Hwan;Shin, Hyeon-Ik;Kang, Sin-Jun;Woo, Cheon-Hui;Woo, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.123-133
    • /
    • 1998
  • In this paper, an algorithm of fault detection and diagnosis during operation of induction motors under the condition of various loads and rates is investigated. For this purpose, the spectrum pattern of input currents is used in monitoring the state of induction motors, and by clustering the spectrum pattern of input currents, the newly occurrence of spectrum patterns caused by faults are detected. For the diagnosis of the fault detected, a fuzzy fault tree is designed, and the fuzzy relation equation representing the relation between an induction motor fault and each fault type, is solved. The solution of the fuzzy relation equation shows the possibility of occurence of each fault. The results obtained are summarized as follows : (1) Using clustering algorithm by unsupervised learning, an on-line fault detection method unaffected by the characteristics of loads and rates is implemented, and the degree of dependency for experts during fault detection is reduced. (2) With the fuzzy fault tree, the fault diagnosis process become systematic and expandable to the whole system, and the diagnosis for sub-systems can be made as an object-oriented module.

  • PDF

Application of Multiple Parks Vector Approach for Detection of Multiple Faults in Induction Motors

  • Vilhekar, Tushar G.;Ballal, Makarand S.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.972-982
    • /
    • 2017
  • The Park's vector of stator current is a popular technique for the detection of induction motor faults. While the detection of the faulty condition using the Park's vector technique is easy, the classification of different types of faults is intricate. This problem is overcome by the Multiple Park's Vector (MPV) approach proposed in this paper. In this technique, the characteristic fault frequency component (CFFC) of stator winding faults, rotor winding faults, unbalanced voltage and bearing faults are extracted from three phase stator currents. Due to constructional asymmetry, under the healthy condition these characteristic fault frequency components are unbalanced. In order to balanced them, a correction factor is added to the characteristic fault frequency components of three phase stator currents. Therefore, the Park's vector pattern under the healthy condition is circular in shape. This pattern is considered as a reference pattern under the healthy condition. According to the fault condition, the amplitude and phase of characteristic faults frequency components changes. Thus, the pattern of the Park's vector changes. By monitoring the variation in multiple Park's vector patterns, the type of fault and its severity level is identified. In the proposed technique, the diagnosis of faults is immune to the effects of unbalanced voltage and multiple faults. This technique is verified on a 7.5 hp three phase wound rotor induction motor (WRIM). The experimental analysis is verified by simulation results.

Rotor Failures Diagnosis of Squirrel Cage Induction Motors with Different Supplying Sources

  • Menacer, Arezki;Champenois, Gerard;Nait Said, Mohamed Said;Benakcha, Abdelhamid;Moreau, Sandrine;Hassaine, Said
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.219-228
    • /
    • 2009
  • The growing application and the numerous qualities of induction motors (1M) in industrial processes that require high security and reliability levels has led to the development of multiple methods for early fault detection. However, various faults can occur, such as stator short-circuits and rotor failures. Traditionally the diagnosis machine is done through a sinusoidal power supply, in the present paper we study experimentally the effects of the rotor failures, such as broken rotor bars in function of the ac supplying, the load and show the impact of the converter from diagnosis of the machine. The technique diagnosis used is based on the spectral analysis of stator currents or stator voltages respectively according to the types of induction motor ac supplying. So, four different ac supplying are considered: ${\odot}$ the IM is directly by the balanced three-phase network voltage source, ${\odot}$ the IM is fed by a sinusoidal current source given the controlled by hysteresis, ${\odot}$ the IM is fed (in open loop) by a scalar control imposing through ratio V/f=constant, ${\odot}$ the IM is controlled through a vector control using space vector pulse width modulation (SVPWM) technique inverter with an outer speed loop.

Fault Modeling and Diagnosis using Wavelet Decomposition in Squirrel-Cage Induction Motor Under Mixed Fault Condition (복합고장을 가지는 농형유도전동기의 모델링과 웨이블릿 분해를 이용한 고장진단)

  • Kim, Youn-Tae;Bae, Hyeon;Park, Jin-Su;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.691-697
    • /
    • 2006
  • Induction motors are critical components in industrial process. So there are many research in the condition based maintenance, online monitoring system, and fault detection. This paper presents a scheme on the detection and diagnosis of the three-phase squirrel induction motor under unbalanced voltage, broken rotor bar, and a combination of these two faults. Actually one fault happen in operation, it influence other component in motor or cause another faults. Accordingly it is useful to diagnose and detect a combination fault in induction motor as well as each fault. The proposed fault detection and diagnosis algorithm is based on the stator currents from the squirrel induction motor and simulated with the aid of Matlab Simulink.

Diagnosis of Inter Turn Short Circuit in 3-Phase Induction Motors Using Applied Clarke Transformation (Clarke 변환을 응용한 3상 유도전동기의 Inter Turn Short Circuit 진단)

  • Yeong-Jin Goh;Kyoung-Min Kim
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.518-523
    • /
    • 2023
  • The diagnosis of Inter Turn Short Circuits (ITSC) in induction motors is critical due to the escalating severity of faults resulting from even minor disruptions in the stator windings. However, diagnosing ITSC presents significant challenges due to similarities in noise and losses shared with 3-phase induction motors. Although artificial intelligence techniques have been explored for efficient diagnosis, practical applications heavily rely on model-based methods, necessitating further research to enhance diagnostic performance. This study proposed a diagnostic method applied the Clarke Transformation approach, focusing solely on current components while disregarding changes in rotating flux. Experimental results conducted over a 30-minute period, encompassing both normal and ITSC conditions, demonstrate the effectiveness of the proposed approach, with FAR(False Accept Rates) of 0.2% for normal-to-ITSC FRR(False Rejection Rates) and 0.26% for ITSC-to-normal FRR. These findings underscore the efficacy of the proposed approach.