• Title/Summary/Keyword: Faults diagnosis of induction motors

Search Result 63, Processing Time 0.025 seconds

Fault diagnosis system of induction motor using artificial neural network (인공신경망을 이용한 유도전동기고장진단)

  • Byun, Yeun-Sub;Wang, Jong-Bae;Kim, Jong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2222-2224
    • /
    • 2002
  • Induction motors are critical components of many industrial machines and are frequently integrated in commercial equipment. The heavy economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system (motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method are used for induction motor fault diagnosis. This method analyzes the motors supply current. since this diagnoses faults of the motor. The diagnostic algorithm is based on the artificial neural network, and the diagnosis system is programmed by using LabVIEW and MATLAB.

  • PDF

Fault diagnosis of induction motor using principal component analysis (주성분 분석기법을 이용한 유도전동기 고장진단)

  • Byun, Yeun-Sub;Lee, Byung-Song;Baek, Jong-Hyen;Wang, Jong-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.645-648
    • /
    • 2003
  • Induction motors are a critical component of industrial processes. Sudden failures of such machines can cause the heavy economical losses and the deterioration of system reliability. Based on the reliability and cost competitiveness of driving system (motors), the faults detection and the diagnosis of system are considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyses the motor's supply current. since this diagnoses faults of the motor. The diagnostic algorithm is based on the principal component analysis(PCA), and the diagnosis system is programmed by using LabVIEW and MATLAB.

  • PDF

Robust Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors

  • Hwang, Don-Ha;Youn, Young-Woo;Sun, Jong-Ho;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • This paper proposes a new diagnosis algorithm to detect broken rotor bars (BRBs) faults in induction motors. The proposed algorithm is composed of a frequency signal dimension order (FSDO) estimator and a fault decision module. The FSDO estimator finds a number of fault-related frequencies in the stator current signature. In the fault decision module, the fault diagnostic index from the FSDO estimator is used depending on the load conditions of the induction motors. Experimental results obtained in a 75 kW three-phase squirrel-cage induction motor show that the proposed diagnosis algorithm is capable of detecting BRB faults with an accuracy that is superior to a zoom multiple signal classification (ZMUSIC) and a zoom estimation of signal parameters via rotational invariance techniques (ZESPRIT).

Development of Online Monitoring System for Induction Motors (유도전동기 온라인 감시진단 시스템 개발)

  • Kim, Ki-Bum;Youn, Young-Woo;Hwang, Don-Ha;Sun, Jong-Ho;Jung, Tea-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.5
    • /
    • pp.23-30
    • /
    • 2014
  • This paper presents an on-line diagnosis system for identifying health and faulted conditions in squirrel-cage induction motors using stator current, temperature, and partial discharge signals. The proposed diagnosis system can diagnose induction motor faults such as broken rotor bars, air-gap eccentricities, stator winding insulations, and bearing faults. Experimental results obtained from induction motors show that the proposed system is capable of detecting induction motor faults.

Fault diagnosis of induction motor using principal component analysis (주성분 분석기법을 통한 유도전동기 고장진단)

  • Byun Yeun-Sub;Lee Byung-Song;Bae Chang-Han;Wang Jong-Bae
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.529-534
    • /
    • 2003
  • Within industry induction motors have a broad application area to drive pumps, fans, elevators and electric trains. Sudden failures of such machines can cause the heavy economical losses and the deterioration of system reliability. Based on the reliability and cost competitiveness of driving system (motors), the faults detection and the diagnosis of system are considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method are used for induction motor fault diagnosis. This method analyzes the motor's supply current, since this diagnoses faults of the motor. The diagnostic algorithm is based on the principal component analysis(PCA), and the diagnosis system is programmed by using LabVIEW and MATLAB.

  • PDF

A study on the fault diagnosis system for Induction motor using current signal analysis (전류신호 분석을 통한 유도전동기 고장진단시스템 연구)

  • Byun, Yeun-Sub;Jang, Dong-Uk;Park, Hyun-June;Wang, Jong-Bae;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.19-21
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system(motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor's supply current, since this diagnoses the motor's condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

A study on the fault diagnosis system for Induction motor (유도전동기 고장진단시스템 연구)

  • Byun, Yeun-Sub;Park, Hyun-June;Kim, Gil-Dong;Han, Young-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2172-2174
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system (motors), the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis (MCSA) method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor's supply current, since this diagnoses the motor's condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

The Fuzzy Fault Diagnosis System for Induction Motor

  • Sub, Byung-Yeun;Uk, Jang-Dong;Hyundai-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.65.1-65
    • /
    • 2001
  • Induction motors are a critical component of many industrial machines and are frequently integrated in commercial equipment. The many economical losses and the deterioration of system reliability might be caused by the failure of induction motors in industrial field. Based on the reliability and cost competitiveness of driving system motors, the faults detection and diagnosis of system is considered very important factors. In order to perform the faults detection and diagnosis of motors, the vibration monitoring method and motor current signature analysis MCSA method are emphasized. In this paper, MCSA method is used for induction motor fault diagnosis. This method analyzes the motor´s supply current, since this diagnoses the motor´s condition. The diagnostic system is constructed by using LabVIEW of National Instruments.

  • PDF

Fault Diagnosis of Induction Motor using analysis of Stator Current (고정자 전류 분석을 이용한 유도전동기 고장진단)

  • Shin, Jung-Ho;Kang, Dae-Seong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • As increasing of using induction motors, the induction motors faults cause serious damage to the industry. Therefore to find out faults of induction motor is recognized as important problem awaiting solution. But to make matters worse, the faults of induction motors often progress through long time. It means that early diagnosis is very important. Many researches have been progressed and general method of diagnosis is using vibration sensor to diagnose fault of induction motor. However, although it is reliability technique, it demands high price and it is difficult to use. This paper presents an implementation of technique for fault diagnosis of induction motor using wavelet transform based stator current and it is composed with algorithm that decides whether fault existence or not using C++ based on windows software. The algorithm will be accomplished in real-time using current data acquisition board and PC automatically with Neural Network algorithm.

  • PDF

Faults Diagnosis of Induction Motors by Neural Network (인공신경망을 이용한 유도전동기 고장진단)

  • 김부열;우혁재;송명현;박중조;김경민;정회범
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.294-299
    • /
    • 2002
  • This paper presents a faults diagnosis technique of induction motors based on a neural network. Only stator current is measured, transformed by using FFT and normalized for the training. Healthy, bearing fault, stator fault and rotor end-ring fault motors are prepared to obtain the learning data and diagnose the several faults. For more effective diagnosis, the load rate is changed by 100%, 60%, 30% of full load and the obtained are applied to the teaming process. The experimental results show the proposed method is very detectable and applicable to the real diagnosis system.