• 제목/요약/키워드: Fault-tolerant scheme

검색결과 146건 처리시간 0.023초

Robust Fault-Tolerant Control for Robotic Systems

  • Shin, Jin-Ho;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.513-518
    • /
    • 1998
  • In this paper, a robust fault-tolerant control scheme for robot manipulators overcoming actuator failures is presented. The joint(or actuator) fault considered in this paper is the free-swinging joint failure and causes the loss of torque on a joint. The presented fault-tolerant control framework includes a normal control with normal(non-failed) operation, a fault detection and a fault-tolerant control to achieve task completion. For both no uncertainty case and uncertainty case, a stable normal con-troller and an on-line fault detection scheme are presented. After the detection and identification of joint failures, the robot manipulator becomes the underactuated robot system with failed actuators. A robust adaptive control scheme of robot manipulators with the detected failed-actuators using the brakes equipped at the failed(passive) joints is proposed in the presence of parametric uncertainty and external disturbances. To illustrate the feasibility and validity of the proposed fault-tolerant control scheme, simulation results for a three-link planar robot arm with a failed joint are presented.

  • PDF

결함허용 실시간 시스템을 위한 이중화 기법과 체크포인팅 기법의 성능 비교 (Performance Comparisons of Duplex Scheme and Checkpointing Scheme for Fault-Tolerant Real-Time Systems)

  • 임성화;김재훈;김성수
    • 한국정보처리학회논문지
    • /
    • 제6권9호
    • /
    • pp.2533-2539
    • /
    • 1999
  • 결험 허용(fault olerant) 방법에는 두 개의 시스템으로 같은 직업을 수행하게 하는 이중계(duplex) 시스템과, 체크포인트를 두어 결함 발생 시 rollback 하는 checkpoint & rollback 시스템이 있다. 기존 결함 허용 시스템에서는 요구되는 신뢰성을 유지하며 테스크의 수행시간을 단축시키는데 주안점을 두었지만 시간제약을 갖는 실시간 응용 분야에서는 신뢰성 유지와 정해진 시간 이내에 테스크를 종료시키는 것이 더욱 중요하다. 본 논문에서는 이들 결함 허용 시스템을 실시간 응용 측면에서 비교 분석하였다.

  • PDF

Torque Ripple Suppression Method for BLDCM Drive Based on Four-Switch Three-Phase Inverter

  • Pan, Lei;Sun, Hexu;Wang, Beibei;Su, Gang;Wang, Xiuli;Peng, Guili
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.974-986
    • /
    • 2015
  • A novel inverter fault-tolerant control scheme is proposed to drive brushless DC motor. A fault-tolerant inverter and its three fault-tolerant schemes (i.e., phase A fault-tolerant, phase B fault-tolerant, and phase C fault-tolerant) are analyzed. Eight voltage vectors are summarized and a voltage vector selection table is used in the control scheme to improve the midpoint current of the split capacitors. A stator flux observer is proposed. The observer can improve flux estimation, which does not require any speed adaptation mechanism and is immune to speed estimation error. Global stability of the flux observer is guaranteed by the Lyapunov stability analysis. A novel stator resistance estimator is incorporated into the sensorless drive to compensate for the effects of stator resistance variation. DC offset effects are mitigated by introducing an integral component in the observer gains. Finally, a control system based on the control scheme is established. Simulation and experiment results show that the method is correct and feasible.

3-레벨 ANPC 인버터의 고장 허용 운전 시 중성점 전압 균형 제어 기법 (Neutral-Point Voltage Balancing Control Scheme for Fault-Tolerant Operation of 3-Level ANPC Inverter)

  • 이재운;김지원;박병건;노의철
    • 전력전자학회논문지
    • /
    • 제24권2호
    • /
    • pp.120-126
    • /
    • 2019
  • This study proposes a neutral voltage balance control scheme for stable fault-tolerant operation of an active neutral point clamped (ANPC) inverter using carrier-based pulse width modulation. The proposed scheme maintains the neutral voltage balance by reconfiguring the switching combination and modulating the reference output voltage in order to solve the degradation of the output characteristic in the fault tolerant operation due to the fault of the power semiconductor switch constituting the ANPC inverter. The feasibility of the proposed control scheme is confirmed by HIL experiment using RT-BOX.

비선형 보일러 시스템에서의 이상허용제어 (Fault Tolerant Control for Nonlinear Boiler System)

  • 윤석민;김대우;이명의;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.254-260
    • /
    • 2000
  • This paper deals with the development of fault tolerant control for a nonlinear boiler system with noise and disturbance. The MCMBPC(Multivariable Constrained Model Based Predictive Control) is adopted for the control of the specific boiler turbin model. The fault detection and diagnosis are accomplished with the Kalman filter and two bias estimators. Once a fault is detected, two Bias estimators are driven to estimate the fault and to discriminate Process fault and sensor fault. In this paper, a fault tolerant control scheme combining MCMBPC with a fault compensation method based on the bias estimator is proposed. The proposed scheme has been applied to the nonlinear boiler system and shown a satisfactory performance through some simulations.

  • PDF

교착 회피를 고려한 내고장성 세다리 걸음새 (Fault-Tolerant Tripod Gaits Considering Deadlock Avoidance)

  • 노지명;양정민
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.585-593
    • /
    • 2004
  • Fault-tolerant gait planning in legged locomotion is to design gaits with which legged robots can maintain static stability and motion continuity against a failure in a leg. For planning a robust and deadlock-free fault-tolerant gait, kinematic constraints caused by a failed leg should be closely examined with respect to remaining mobility of the leg. In this paper, based on the authors's previous results, deadlock avoidance scheme for fault-tolerant gait planning is proposed for a hexapod robot walking over even terrain. The considered fault is a locked joint failure, which prevents a joint of a leg from moving and makes it locked in a known position. It is shown that for guaranteeing the existence of the previously proposed fault-tolerant tripod gait of a hexapod robot, the configuration of the failed leg must be within a range of kinematic constraints. Then, for coping with failure situations where the existence condition is not satisfied, the previous fault-tolerant tripod gait is improved by including the adjustment of the foot trajectory. The foot trajectory adjustment procedure is analytically derived to show that it can help the fault-tolerant gait avoid deadlock resulting from the kinematic constraint and does not make any harmful effect on gait mobility. The post-failure walking problem of a hexapod robot with the normal tripod gait is addressed as a case study to show the effectiveness of the proposed scheme.

Design of Fault Tolerant Control System for Steam Generator Using Fuzzy Logic

  • Kim, Myung-Ki;Seo, Mi-Ro
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.321-328
    • /
    • 1998
  • A controller and sensor fault tolerant system jot a steam generator is designed with fuzzy logic. A structure of the : proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controlled and a sensor induced performances to identify Which Part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a charge in error of the system output an chosen as fuzzy variables. The fuzzy logic jot a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency, Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the : proposed fault tolerant control scheme jot a steam generator regulates welt water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even mote.

  • PDF

자기베어링의 Fault Tolerance 제어 (Fault Tolerant Control of Magnetic Bearings)

  • Na, Uhn-Joo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.342.2-342
    • /
    • 2002
  • Fault tolerant control algorithm fer heteropolar magnetic bearings are presented. This fault tolerant control utilizes grouping of currents as C-cores in order to isolate magnetic fluxes. Hardware requirements to maintain fault tolerant control are reduced since decoupling chokes are not required in this control scheme. The currents supplied to each pole are redistributed, if some coils (ail suddenly, such that the resultant magnetic forces should remain invariant through coil failure events. (omitted)

  • PDF

Satellite Attitude Control with a Modified Iterative Learning Law for the Decrease in the Effectiveness of the Actuator

  • Lee, Ho-Jin;Kim, You-Dan;Kim, Hee-Seob
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권2호
    • /
    • pp.87-97
    • /
    • 2010
  • A fault tolerant satellite attitude control scheme with a modified iterative learning law is proposed for dealing with actuator faults. The actuator fault is modeled to reflect the degradation of actuation effectiveness, and the solar array-induced disturbance is considered as an external disturbance. To estimate the magnitudes of the actuator fault and the external disturbance, a modified iterative learning law using only the information associated with the state error is applied. Stability analysis is performed to obtain the gain matrices of the modified iterative learning law using the Lyapunov theorem. The proposed fault tolerant control scheme is applied to the rest-to-rest maneuver of a large satellite system, and numerical simulations are performed to verify the performance of the proposed scheme.

Fault Tolerant Control of Magnetic Bearings

  • Na Uhn-Joo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.388-392
    • /
    • 2002
  • Fault tolerant control algorithm for heteropolar magnetic bearings are presented. This fault tolerant control utilizes grouping of currents as C-cores in order to isolate magnetic fluxes. Hardware requirements to maintain fault tolerant control are reduced since decoupling chokes are not required in this control scheme. The currents supplied to each pole are redistributed, if some coils fail suddenly, such that the resultant magnetic forces should remain invariant through coil failure events. Load capacity before magnetic saturation is reduced through coil failures while maintaining the same magnetic forces before and after failure.

  • PDF