• Title/Summary/Keyword: Fault-Tolerant Computer

Search Result 195, Processing Time 0.026 seconds

The Fault Tolerance of Interconnection Network HCN(n, n) and Embedding between HCN(n, n) and HFN(n, n) (상호연결망 HCN(n, n)의 고장허용도 및 HCN(n, n)과 HFN(n, n) 사이의 임베딩)

  • Lee, Hyeong-Ok;Kim, Jong-Seok
    • The KIPS Transactions:PartA
    • /
    • v.9A no.3
    • /
    • pp.333-340
    • /
    • 2002
  • Embedding is a mapping an interconnection network G to another interconnection network H. If a network G can be embedded to another network H, algorithms developed on G can be simulated on H. In this paper, we first propose a method to embed between Hierarchical Cubic Network HCN(n, n) and Hierarchical Folded-hypercube Network HFN(n, n). HCN(n, n) and HFN(n, n) are graph topologies having desirable properties of hypercube while improving the network cost, defined as degree${\times}$diameter, of Hypercube. We prove that HCN(n, n) can be embedded into HFN(n, n) with dilation 3 and congestion 2, and the average dilation is less than 2. HFN(n, n) can be embedded into HCN(n, n) with dilation 0 (n), but the average dilation is less than 2. Finally, we analyze the fault tolerance of HCN(n, n) and prove that HCN(n, n) is maximally fault tolerant.

Optical Wireless Access Point Agent Networks

  • Lee, Tae-Gyu
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.98-106
    • /
    • 2009
  • This paper proposes an optical wireless transfer agent method which realizes the continuous and swift data transfer of optical wireless terminals in optical wireless networks. The unguided wireless channel generally shows frequent link disconnections and propagation delays due to weak wireless links. Specially speaking, optical wireless channels have more vulnerable links and roaming propagation delays relative to the weakness of the previous RF channels due to their low signal connectivity and small geographic coverage. Conventional optical wireless network protocols did not consider any fault models about physical link faults. Consequently, they have shown data transfer inefficiency for both data link control and physical wireless link control. To overcome these optical wireless environmental problems, this paper suggests a new wireless access point (or base station) agent system, which provides wireless or mobile clients with previous link layer protocols compensated.

Ad hoc Software Rejuvenation for Survivability

  • Khin Mi Mi Aung;Park, Jong-Sou
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2003.12a
    • /
    • pp.141-145
    • /
    • 2003
  • We propose the model of Software Rejuvenation methodology, which is applicable for survivability. Software rejuvenation is a proactive fault management technique and being used in fault tolerant systems as a cost effective technique for dealing with software faults. Survivability focuses on delivery of essential services and preservation of essential assets, even systems are penetrated and compromised. Thus, our objective is to detect the intrusions in a real time and survive in face of such attacks. As we deterrent against an attack in a system level, the Intrusion tolerance could be maximized at the target environment. We address the optimal time to execute ad hoc software rejuvenation and we compute it by using the semi Markov process. This is one way that could be really frustrated and deterred the attacks, as the attacker can't make their progress. This Software Rejuvenation method can be very effective under the assumption of unknown attacks. In this paper, we compute the optimum time to perform an ad hoc Software Rejuvenation through intrusions.

  • PDF

Development of Single Board Computer (SBC) for Nano/Pico Small Satellites (초소형위성용 단일보드 탑재컴퓨터의 개발)

  • Kim, Young-Hyun;Moon, Byoung-Young;Lee, Bo-Ra;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.101-110
    • /
    • 2004
  • Flight and Qualification Models of Single Board Computer (SBC), called On-Board Computer (OBC), for HAUSAT-l picosatellite, which is scheduled to launch on September, 2004 by Russian "Dnepr" launch vehicle, have been developed. The OBC of HAUSAT-1 has been designed with some improved features compared to other picosatellites. A multifunctional controller and up-to-date SPI (Serial Peripheral Interface) and 1-Wire interface are implemented to simplify the harness routing and to minimize the mass and size of OBC. The improved fault-tolerant architecture design methodology is incorporated in the HAUSAT-1 OBC to protect against space radiation environment. The functions of the OBC were fully tested and verified by the Electrical Test Bed (ETB) model. This paper is also addressing the environmental test results, such as random vibration and thermal vacuum tests.

An Efficient Coordinator Election Algorithm in Synchronous Distributed Systems (동기적 분산 시스템에서 효율적인 조정자 선출 알고리즘)

  • 박성훈
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.10
    • /
    • pp.553-561
    • /
    • 2004
  • Leader election is an important problem in developing fault-tolerant distributed systems. As a classic solution for leader election, there is Garcia-Molina's Bully Algorithm based on time-outs in synchronous systems. In this paper, we re-write the Bully Algorithm to use a failure detector instead of explicit time-outs. We show that this algorithm is more efficient than the Garcia-Molina's one in terms of the processing time. That is because the Bully_FD uses FD to know whether the process is up or down so fast and it speed up its execution time. Especially, where many processes are connected in the system and crash and recovery of processes are frequent, the Bully_FD algorithm is much more efficient than the classical Bully algorithm in terms of the processing time.

qPALS: Quality-Aware Synchrony Protocol for Distributed Real-Time Systems

  • Kang, Woochul;Sha, Lui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3361-3377
    • /
    • 2014
  • Synchronous computing models provided by real-time synchrony protocols, such as TTA [1] and PALS [2], greatly simplify the design, implementation, and verification of real-time distributed systems. However, their application to real systems has been limited since their assumptions on underlying systems are hard to satisfy. In particular, most previous real-time synchrony protocols hypothesize the existence of underlying fault tolerant real-time networks. This, however, might not be true in most soft real-time applications. In this paper, we propose a practical approach to a synchrony protocol, called Quality-Aware PALS (qPALS), which provides the benefits of a synchronous computing model in environments where no fault-tolerant real-time network is available. qPALS supports two flexible global synchronization protocols: one tailored for the performance and the other for the correctness of synchronization. Hence, applications can make a negotiation flexibly between performance and correctness. In qPALS, the Quality-of-Service (QoS) on synchronization and consistency is specified in a probabilistic manner, and the specified QoS is supported under dynamic and unpredictable network environments via a control-theoretic approach. Our simulation results show that qPALS supports highly reliable synchronization for critical events while still supporting the efficiency and performance even when the underlying network is not stable.

An I/O Bus-Based Dual Active Fault Tolerant Architecture fort Good System Performance

  • Kwak, Seung-Uk;Kim, Jeong-Il;Jeong, Keun-Won;Park, Kyong-Bae;Kang, Kyong-In;Kim, Hyen-Uk;Lee, Kwang-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.515-520
    • /
    • 1998
  • In this paper, we propose a new fault tolerant architecture for high availability systems, where for module internal operations both processor modules perform the same tasks at the same time independently of each other while for module external operations both processor modules act actively. That is, operations of synchronization between dual processor modules except clock synchronization are requested only when module external operations are executed. The architecture can not only improve system availability by reducing system reintegration time but also reduce performance degradation problem due to frequent synchronization between dual processor modules. The clock unit consists of a clock generator and a clock synchronization circuit. This supplies a stable clock signal under clock unit disorder of any processor module or rapid clock signal variation. And this architecture achieves system availability and data credibility by designing as symmetrical form.

  • PDF

Biased Multistage Inter connection Network in Multiprocessor System (다중프로세서 시스템에서 편향된 다단계 상호연결망)

  • Choi, Chang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1889-1896
    • /
    • 2011
  • There has been a lot of researches to develop techniques that provide redundant paths, there by making Multistage Interconnection Networks(MINs) fault tolerant. So far, the redundant paths in MINs have been realized by adding additional hardware such as extra stages or duplicated data links. This paper presents a new MIN topology called Hierarchical MIN. The proposed MIN is constructed with 2.5N-4 switching elements, which are much fewer than that of the classical MINs. Even though there are fewer hardware than the classical MINs, the HMIN possesses the property of full access and also provides alternative paths for the fault tolerant. Furthermore, since there is the short cut in HMIN for the localized communication, it takes advantage of exploiting the locality of reference in multiprocessor systems. Its performance under varying degrees of localized communication is analysed and simulated.

A Design of Low Power MAC Operator with Fault Tolerance (에러 내성을 갖는 저전력 MAC 연산기 설계)

  • Jung, Han-Sam;Ku, Sung-Kwan;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.50-55
    • /
    • 2008
  • As more DSP functionalities are integrated into an embedded mobile device, power consumption and device reliability have emerged as crucial issues. As the complexity of mobile embedded designs increases very rapidly, verifying the functionality of the mobile devices has become extremely difficult. Therefore, designs with error (fault) tolerance are often required since these capabilities will enable the design to operate properly even with some existence of errors. However, designs with fault tolerance may suffer from significant power overhead since fault tolerance is often achieved by resource replication. In this paper, we propose a low power and fault tolerant MAC (multiply-and-accumulate) design. The proposed MAC design is based on multiple barrel shifters since MAC designs with barrel-shifters and adders are known to be excellent in terms of power consumption.

Design of Decentralized $H^\infty$ Filter using the Generalization of $H^\infty$ Filter in Indefinite Inner Product Spaces (부정 내적 공간에서의$H^\infty$ 필터의 일반화를 통한 분산 $H^\infty$ 필터의 설계)

  • Kim, Gyeong-Geun;Jin, Seung-Hui;Yun, Tae-Seong;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.735-746
    • /
    • 1999
  • We design the robust and inherently fault tolerant decetralized$$H^infty$$ filter for the multisensor state estimation problem when there are insufficient priori informations on the statistical properties of external disturbances. For developing the proposed algorithm, an alternative form of suboptimal$$H^infty$$ filter equations are formulated by applying an alternative form of Kalman filter equations to the indefinite inner product space state model of suboptimal$$H^infty$$ filtering problems. The decentralized$$H^infty$$ filter that consists of local and central fusion filters can be designed effciently using the proposed alternative$$H^infty$$ filiter gain equations. The proposed decentralized$$H^infty$$ filter is robust against un-known external disturbances since it bounds the maximum energy gain from the external disturbances to the estimation errors under the prescribed level$$r^2$$ in both local and central fusion filters and is also fault tolerant due to its inherent redundancy. In addition, the central fusion equations between the global and local data can reduce the unnecessary calculation burden effectively. Computer simulations are made to ceritfy the robustness and fault tolerance of the proposed algorithm.

  • PDF