• Title/Summary/Keyword: Fault parameters

Search Result 471, Processing Time 0.025 seconds

An Approach for the NHPP Software Reliability Model Using Erlang Distribution (어랑 분포를 이용한 NHPP 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim Hee-Cheul;Choi Yue-Soon;Park Jong-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • The finite failure NHPP models proposed in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, we propose the Erlang reliability model, which can capture the increasing nature of the failure occurrence rate per fault. Equations to estimate the parameters of the Erlang finite failure NHPP model based on failure data collected in the form of inter-failure times are developed. For the sake of proposing shape parameter of the Erlang distribution, we used to the goodness-of-fit test of distribution. Data set, where the underlying failure process could not be adequately described by the existing models, which motivated the development of the Erlang model. Analysis of the failure data set which led us to the Erlang model, using arithmetic and Laplace trend tests, goodness-of-fit test, bias tests is presented.

Comparison of seismic behavior of long period SDOF systems mounted on friction isolators under near-field earthquakes

  • Loghman, Vahid;Khoshnoudian, Faramarz
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.701-723
    • /
    • 2015
  • Friction isolators are one of the most important types of bearings used to mitigate damages of earthquakes. The adaptive behavior of these isolators allows them to achieve multiple levels of performances and predictable seismic behavior during different earthquake hazard levels. There are three main types of friction isolators. The first generation with one sliding surface is known as Friction Pendulum System (FPS) isolators. The double concave friction pendulum (DCFP) with two sliding surfaces is an advanced form of FPS, and the third one, with fully adaptive behavior, is named as triple concave friction pendulum (TCFP). The current study has been conducted to investigate and compare seismic responses of these three types of isolators. The structure is idealized as a two-dimensional single degree of freedom (SDOF) resting on isolators. The coupled differential equations of motion are derived and solved using state space formulation. Seismic responses of isolated structures using each one of these isolators are investigated under seven near fault earthquake motions. The peak values of bearing displacement and base shear are studied employing the variation of essential parameters such as superstructure period, effective isolation period and effective damping of isolator. The results demonstrate a more efficient seismic behavior of TCFP isolator comparing to the other types of isolators. This efficiency depends on the selected effective isolation period as well as effective isolation damping. The investigation shows that increasing the effective isolation period or decreasing the effective isolation damping improves the seismic behavior of TCFP compared to the other isolators. The maximum difference in seismic responses, the base shear and the bearing displacement, for the TCFP isolator are calculated 26.8 and 13.4 percent less than the DCFP and FPS in effective isolation damping equal to10%, respectively.

NHPP Software Reliability Model based on Generalized Gamma Distribution (일반화 감마 분포를 이용한 NHPP 소프트웨어 신뢰도 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.27-36
    • /
    • 2005
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates Per fault. This Paper Proposes reliability model using the generalized gamma distribution, which can capture the monotonic increasing(or monotonic decreasing) nature of the failure occurrence rate per fault. Equations to estimate the parameters of the generalized gamma finite failure NHPP model based on failure data collected in the form of interfailure times are developed. For the sake of proposing shape parameter of the generalized gamma distribution, used to the special pattern. Data set, where the underlying failure process could not be adequately described by the knowing models, which motivated the development of the gamma or Weibull model. Analysis of failure data set for the generalized gamma modell, using arithmetic and Laplace trend tests . goodness-of-fit test, bias tests is presented.

  • PDF

The study for NHPP Software Reliability Model based on Kappa(2) distribution (Kappa(2) NHPP에 의한 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.689-696
    • /
    • 2005
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the Kappa(2) reliability model, which can capture the nomotonic decreasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on sum of the squared errors and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing two parameter of the Kappa distribution, was employed. This analysis of failure data compared with the Kappa model and the existing model using arithmetic and Laplace trend tests, bias tests is presented.

  • PDF

Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect

  • Sonmezer, Yetis Bulent;Celiker, Murat
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.131-146
    • /
    • 2020
  • Evaluation of earthquake impacts in settlements with a high risk of earthquake occurrence is important for the determination of site-specific dynamic soil parameters and earthquake-resistant structural planning. In this study, dynamic soil properties of Karliova (Bingol) city center, located near to the intersection point of the North Anatolian Fault Zone and the East Anatolian Fault Zone and therefore having a high earthquake risk, were investigated by one-dimensional equivalent linear site response analysis. From ground response analyses, peak ground acceleration, predominant site period, 0.2-sec and 1-sec spectral accelerations and soil amplification maps of the study area were obtained for both near-field and far-field earthquake effects. The average acceleration spectrum obtained from analysis, for a near-field earthquake scenario, was found to exceed the design spectra of the Turkish Earthquake Code and Eurocode 8. Yet, the average acceleration spectrum was found to remain below the respective design spectra of the two codes for the far-field earthquake scenario. According to both near- and far-field earthquake scenarios in the study area, the low-rise buildings with low modal vibration durations are expected to be exposed to high spectral acceleration values and high-rise buildings with high modal vibration durations will be exposed to lower spectral accelerations. While high amplification ratios are observed in the north of the study area for the near-distance earthquake scenario, high amplification ratios are observed in the south of the study area for the long-distance earthquake scenario.

The Study for NHPP Software Reliability Model based on Chi-Square Distribution (카이제곱 NHPP에 의한 소프트웨어 신뢰성 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.1 s.39
    • /
    • pp.45-53
    • /
    • 2006
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the $x^2$ reliability model, which can capture the increasing nature of the failure occurrence rate per fault. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE, AIC statistics and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set, SYS2(Allen P.Nikora and Michael R.Lyu), for the sake of proposing shape parameter of the $x^2$ distribution using the degree of freedom, was employed. This analysis of failure data compared with the $x^2$ model and the existing model using arithmetic and Laplace trend tests, Kolmogorov test is presented.

  • PDF

A study on Development of Remote Vehicle Fault Diagnostic System (원격 자동차 고장 진단 시스템 개발에 대한 연구)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.224-227
    • /
    • 2015
  • Data transmission via the car driver's tethered smart phone may have a volume-dependent billing in case car driver' phone transmits data in real-time to the remote data center. The on-board diagnosis data generated are temporary stored locally to mobile remote diagnosis application on the car driver's phone, and then transmit to the data center later when car driver connects to the Internet. To increase the easiest of using the remote vehicle application without blocking other tasks to be executing on the cloud, node.js stands as a suitable candidate for handling tasks of data storage on the cloud via mobile network. We demonstrate the effectiveness of the proposed architecture by simulating a preliminary case study of an android application responsible of real time analysis by using a vehicle-to- smart phones applications interface approach that considers the smart phones to act as a remote user which passes driver inputs and delivers output from external applications. In this paper, we propose a study on development of Remote Vehicle fault diagnostic system features web server architecture based event loop approach using node.js platform, and wireless communication to handle vehicle diagnostics data to a data center.

  • PDF

Seismic performance evaluation of circular composite columns by shaking table test (진동대 실험을 통한 원형 합성 기둥의 내진 성능 평가)

  • Shim, Chang-Su;Chung, Young-Soo;Park, Ji-Ho;Park, Chang-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.71-81
    • /
    • 2007
  • For the design of composite bridge piers, detail requirements for the reinforcements is not clear to satisfy the required seismic performance. Composite bridge piers were suggested to reduce the sectional dimensions and to enhance the ductility of the columns under earthquake loadings. In this paper, five specimens of concrete encased composite columns of 400mm diameter with single core steel were fabricated to investigate the seismic performance of the composite columns. Shaking table tests and a Pseudo-Dynamic test were carried out and structural behavior of small-scaled models considering near-fault motions was evaluated. Test parameters were the pace of the transverse reinforcement, lap splice of longitudinal reinforcement and encased steel member sections. The displacement ductility from shaking table tests was lower than that from the pseudo-dynamic test. Limited ductile design and 50% lap splice of longitudinal reinforcement reduced the displacement ductility. Steel ratio showed significant effect on the ultimate strength. Lap splice and low transverse reinforcements reduced the displacement capacity. The energy dissipation capacity of composite columns did not show significant difference according to details.

Identification of high-dip faults utilizing the GRM technique of seismic refraction method(Ⅰ) - Computer modeling - (굴절파 GRM 해석방법을 응용한 고경사 단층 인지(Ⅰ) - 컴퓨터 모델링 연구 -)

  • Kim, Gi Yeong
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 1999
  • To effectively identify near-surface faults with vertical slips from seismic refraction data, the GRM interpretation technique is tested and investigated in terms of various parameters through computer modeling. A characteristic change in shape of the velocity-analysis function near faults is noticed, and a new strategy of `Slope Variation Indicator (SVI)' is developed and tested in this study. The SVI is defined as a first horizontal derivative of the difference of velocity analysis functions for a large XY value and a small one, respectively. As the dip of refractor decreases and as the difference in XY value increases, the peak value of SVI increases and its duration decreases. Consequently, the SVI indicates accurately the location of buried fault in the test models. The SVI is believed to be an efficient tool in seismic refraction method to investigate location and distribution of shallowly buried faults.

  • PDF

An Effective Feature Extraction Method for Fault Diagnosis of Induction Motors (유도전동기의 고장 진단을 위한 효과적인 특징 추출 방법)

  • Nguyen, Hung N.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.23-35
    • /
    • 2013
  • This paper proposes an effective technique that is used to automatically extract feature vectors from vibration signals for fault classification systems. Conventional mel-frequency cepstral coefficients (MFCCs) are sensitive to noise of vibration signals, degrading classification accuracy. To solve this problem, this paper proposes spectral envelope cepstral coefficients (SECC) analysis, where a 4-step filter bank based on spectral envelopes of vibration signals is used: (1) a linear predictive coding (LPC) algorithm is used to specify spectral envelopes of all faulty vibration signals, (2) all envelopes are averaged to get general spectral shape, (3) a gradient descent method is used to find extremes of the average envelope and its frequencies, (4) a non-overlapped filter is used to have centers calculated from distances between valley frequencies of the envelope. This 4-step filter bank is then used in cepstral coefficients computation to extract feature vectors. Finally, a multi-layer support vector machine (MLSVM) with various sigma values uses these special parameters to identify faulty types of induction motors. Experimental results indicate that the proposed extraction method outperforms other feature extraction algorithms, yielding more than about 99.65% of classification accuracy.