• Title/Summary/Keyword: Fault location estimation

Search Result 62, Processing Time 0.033 seconds

Fault Location Estimation for High Impedance Fault using Wavelet Transform (Wavelet 변환을 이용한 고저항 지락사고 고장점 추정)

  • Kim, Hyun;Kim, Chul-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.8
    • /
    • pp.369-373
    • /
    • 2000
  • High impedance fault(HIF) is defined as a fault that the general overcurrent relay can not detect or interrupt. Especially when HIF occurs in residential areas, energized high voltage conductor results in fire hazard, equipment damage or personal threat. This paper proposes a fault location estimation algorithm for high impedance fault using wavelet transform. The algorithm is based on the wavelet analysis of the fault voltage and current signals. The performance of the proposed algorithm is tested on a typical 154kV korean transmission line system under various fault conditions. From the tests presented in this paper it can be concluded that a fault location estimation algorithm using wavelet transform can precisely calculate the fault point for HIF.

  • PDF

Enhanced Fault Location Algorithm for Short Faults of Transmission Line (1회선 송전선로 단락사고의 개선된 고장점 표정기법)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.955-961
    • /
    • 2016
  • Fault location estimation is an important element for rapid recovery of power system when fault occur in transmission line. In order to calculate line impedance, most of fault location algorithm uses by measuring relaying waveform using DFT. So if there is a calculation error due to the influence of phasor by DC offset component, due to large vibration by line impedance computation, abnormal and non-operation of fault locator can be issue. It is very important to implement the robust fault location algorithm that is not affected by DC offset component. This paper describes an enhanced fault location algorithm based on the DC offset elimination filter to minimize the effects of DC offset on a long transmission line. The proposed DC offset elimination filter has not need any erstwhile information. The phase angle delay of the proposed DC offset filter did not occurred and the gain error was not found. The enhanced fault location algorithm uses DFT filter as well as the proposed DC offset filter. The behavior of the proposed fault location algorithm using off-line simulation has been verified by data about several fault conditions generated by the ATP simulation program.

Two-Terminal Numerical Algorithm for Single-Phase Arcing Fault Detection and Fault Location Estimation Based on the Spectral Information

  • Kim, Hyun-Houng;Lee, Chan-Joo;Park, Jong-Bae;Shin, Joong-Rin;Jeong, Sang-Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.460-467
    • /
    • 2008
  • This paper presents a new numerical algorithm for the fault location estimation and arcing fault detection when a single-phase arcing ground fault occurs on a transmission line. The proposed algorithm derived in the spectrum domain is based on the synchronized voltage and current samples measured from the PMUs(Phasor Measurement Units) installed at both ends of the transmission lines. In this paper, the algorithm uses DFT(Discrete Fourier Transform) for estimation. The algorithm uses a short data window for real-time transmission line protection. Also, from the calculated arc voltage amplitude, a decision can be made whether the fault is permanent or transient. The proposed algorithm is tested through computer simulation to show its effectiveness.

Distance Relaying Algorithm Based on An Adaptive Data Window Using Least Square Error Method (최소자승법을 이용한 적응형 데이터 윈도우의 거리계전 알고리즘)

  • Jeong, Ho-Seong;Choe, Sang-Yeol;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.371-378
    • /
    • 2002
  • This paper presents the rapid and accurate algorithm for fault detection and location estimation in the transmission line. This algorithm uses wavelet transform for fault detection and harmonics elimination and utilizes least square error method for fault impedance estimation. Wavelet transform decomposes fault signals into high frequence component Dl and low frequence component A3. The former is used for fault phase detection and fault types classification and the latter is used for harmonics elimination. After fault detection, an adaptive data window technique using LSE estimates fault impedance. It can find a optimal data window length and estimate fault impedance rapidly, because it changes the length according to the fault disturbance. To prove the performance of the algorithm, the authors test relaying signals obtained from EMTP simulation. Test results show that the proposed algorithm estimates fault location within a half cycle after fault irrelevant to fault types and various fault conditions.

Fault Location Estimation Algorithm of the parallel transmission lines using a variable data window method (가변 데이터 윈도우 기법을 이용한 병행 2회선 송전선 고장점 추정 알고리즘)

  • Jung, Ho-Sung;Yoon, Chang-Dae;Lee, Seung-Youn;Shin, Myong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.266-268
    • /
    • 2003
  • This paper proposes the Fault Location Estimation Algorithm in the parallel transmission lines. These algorithm uses a variable data window method based on least square error method to estimate fault impedance quickly. And it selects the optimal equation according to the operation situation and usable fault data for minimizing the fault estimation error effected by the zero sequence mutual coupling. After simulation result, we can see that these algorithm estimates fault location more rapidly and exactly.

  • PDF

A Study on Fault Location Using Wavelets in Transmission Line (송전선에서 Wavelets을 이용한 고장점 추정에 관한 연구)

  • Moon, Sung-Chall;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1360-1362
    • /
    • 1999
  • This paper describes the fault location technique using wavelets in transmisson line. Estimation of fault location is performed using synchronized data sampled at two ends of line and travelling wave. The similar current wave modeled in PSCAD/EMTDC and MATLAB was applied to evaluate the accuracy of theory proposed in this paper. The results of fault location shown in this paper will be evaluated as an effective suggestion for fault location in real transmisson line

  • PDF

A Study on Fault Location Using Wavelet in 154kV Transmission Power Cable (154kV 지중송전케이블에서 Wavelet을 이용한 Fault Location에 관한 연구)

  • Lee, Jun-Seong;Mun, Seong-Cheol;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.12
    • /
    • pp.608-613
    • /
    • 2000
  • This paper describes a fault location technique using wavelets in underground transmission power cable system. Estimation of fault location is performed using data smapled at two ends underground system. In the case of 50% fault of total underground transmission line, fault location is calculated using sampled single-end data in underground transmission line. Traveling wave is utilized in capturing the travel time of the transients along the monitored lines between the relay and the fault point. This traveling time information is provided by the wavelet. Simulation was performed using EMTP, ATP Draw and MATLAB. The results of fault location shown in this paper will be evaluated as an effective suggestion for fault location in real underground transmission line.

  • PDF

Transmission Line Fault Location Algorithm Using Estimated Local Source Impedance (자기단 전원임피던스 추정을 이용한 송전선 고장점표정 알고리즘)

  • Kwon, Young-Jin;Kim, Su-Hwan;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.885-890
    • /
    • 2009
  • A fault location algorithm using estimated local source impedance after a fault is proposed in this paper. The method uses after fault data only at the local end. It uses the negative sequence current distribution factor for more accurate estimation. The proposed algorithm can keep up with the variation of the local source impedance. Therefore, the proposed algorithm especially is valid for a transmission line interconnected to a wind farm that the equivalent source impedance changes continuously. The performance of the proposed algorithm was verified under various fault conditions using the Simpowersystem of MATLAB Simulink. The proposed algorithm is largely insensitive to the variation in fault distance and fault resistance. The test results show a very high accurate performance.

Algorithm for Fault Location Estimation on Transmission Lines using Second-order Difference of a Positive Sequence Current Phasor

  • Yeo, Sang-Min;Jang, Won-Hyeok;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.499-506
    • /
    • 2013
  • The accurate estimation of a fault location is desired in distance protection schemes for transmission lines in order to selectively deactivate a faulted line. However, a typical method to estimate a fault location by calculating impedances with voltages and currents at relaying points may have errors due to various factors such as the mutual impedances of lines, fault impedances, or effects of parallel circuits. The proposed algorithm in this paper begins by extracting the fundamental phasor of the positive sequence currents from the three phase currents. The second-order difference of the phasor is then calculated based on the fundamental phasor of positive sequence currents. The traveling times of the waves generated by a fault are derived from the second-order difference of the phasor. Finally, the distance from the relaying point to the fault is estimated using the traveling times. To analyze the performance of the algorithm, a power system with EHV(Extra High Voltage) untransposed double-circuit transmission lines is modeled and simulated under various fault conditions, such as several fault types, fault locations, and fault inception angles. The results of the simulations show that the proposed algorithm has the capability to estimate the fault locations with high speed and accuracy.

A Study on Fault Location Using Wavelet in 154kV Transmission Power Cable (154kV 지중송전케이블에서 Wavelet을 이용한 Fault Location에 관한 연구)

  • Lee, Jun-Sung;Lee, Jong-Beom;Moon, Sung-Chall
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.437-439
    • /
    • 2000
  • This paper describes a fault location technique using wavelets in underground transmission cable system Estimation of fault location is performed using data sampled at two ends of underground system. In the case of 50% fault of total underground transmission line, fault location is calculated using sampled single-end data in underground transmission line. Traveling wave is utilized in capturing the travel time of the transients along the monitored lines between the relay and the fault point. This travel time information is provided by the wavelet. Simulation was performed using EMTP. ATP Draw and MATLAB. The results of fault location shown in this paper will be evaluated as an effective suggestion for fault to location in real underground transmission line.

  • PDF