• Title/Summary/Keyword: Fault line

Search Result 1,138, Processing Time 0.022 seconds

Operational Characteristics of Flux-lock Type SFCL using Series Resonance

  • Lim, Sung-Hun;Han, Byoung-Sung;Choi, Hyo-Sang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.159-163
    • /
    • 2005
  • We analyzed the fault current limiting characteristics of a flux-lock type $high-T_c$ super­conducting fault current limiter (HTSC-FCL) using series resonance between capacitor for series resonance and magnetic field coil which was installed in coil 3. The capacitor for the series resonance in the flux-lock type HTSC-FCL was inserted in series with the magnetic field coil to apply enough magnetic field into HTSC element, which resulted in higher resistance of HTSC element. However, the impedance of the flux lock type HTSC-FCL has started to decrease since the current of coil 3 exceeded one of coil 2 after a fault accident. The decrease in the impedance of the FCL causes the line current to increase and, if continues, the capacitor for the series resonance to be destructed. To avoid this operation, the flux-lock type HTSC-FCL requires an additional device such as fault current interrupter or control circuit for magnetic field. From the experimental results, we investigated the parameter range where the operation as mentioned above for the designed flux-lock type HTSC-FCL using series resonance occurred.

Simultaneous Quench Analysis of a Three-Phase 6.6 kV Resistive SFCL Based on YBCO Thin Films (YBCO 박막을 이용한 3상 6.6kV 항형 초전도 한류기의 동시Quench 분석)

  • Sim J;Kim H. R;Hyun O. B
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • We fabricated a resistive type superconducting fault current limiter (SFCL) of 3-phase $6.6 kV_{rms}$ / rating, based on YBCO thin films grown on sapphire substrates with a diameter off inch. Each element of the SFCL was designed to have the rated voltage of $600 V_{rms}$ $/35A_{rms}$. The elements produced a single phase with 8${\times}$6 components connected in series and parallel. In addition, a NiCr shunt resistor of 23 $\Omega$ was connected in parallel to each of them for simultaneous quenches between the elements. Prior to investigating the performance of the 3 phase SFCL, we examined the quench characteristics for 8 elements connected in series. For all elements, simultaneous quenches and equal voltage distribution within 10% deviation from the average were obtained. Based on these results, performance of the SFCL for single line-to-ground faults was investigated. The SFCL successfully limited the fault current of $10 kA_{ rms}$ below 816 $A_{peak}$ within 0.12 msec right after the fault occurred. During the quench process, average temperature of all components did not exceed 250 K, and the SFCL was totally safe during the whole operation.

  • PDF

Quench Characteristics of Resistive Superconducting Fault Current Limiters (저항형 초전도 한류소자의 퀜치 특성)

  • Kim, Hye-Rim;Hyun, Ok-Bae;Choi, Hyo-Sang;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.214-217
    • /
    • 1999
  • We investigated the quench characteristics of meander line type resistive superconducting fault current limiters based on YBCO thin films grown on 2" diameter LaAlO$_3$ substrates. A gold layer was deposited onto the 0.4 ${\mu}$ m thick YBCO film to disperse the heat generated at hot spots, prior to patterning into 1 mm wide meander lines by photolithography. The limiters were tested with simulated fault currents of various amplitudes. The quench started at 10 A and was completed within 1 msec at the fault current of 65 A$_{peak}$. The dynamic quench characteristics were explained based on the heat conduction within the film and the heat transfer between the film and the surrounding liquid nitrogen. The heat transfer coefficient per unit area was estimated to be 3.0 W/cm$^2$K.

  • PDF

An Analytic Method for Measuring Accurate Fundamental Frequency Components (기본파 성분의 정확한 측정을 위한 해석적 방법)

  • Nam, Sun-Yeol;Gang, Sang-Hui;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.175-182
    • /
    • 2002
  • This paper proposes an analytic method for measuring the accurate fundamental frequency component of a fault current signal distorted with a DC-offset, a characteristic frequency component, and harmonics. The proposed algorithm is composed of four stages: sine filer, linear filter, Prony's method, and measurement. The sine filter and the linear filter eliminate harmonics and the fundamental frequency component, respectively. Then Prony's method is used to estimate the parameters of the DC-offset and the characteristic frequency component. Finally, the fundamental frequency component is measured by compensating the sine-filtered signal with the estimated parameters. The performance evaluation of the proposed method is presented for a-phase to around faults on a 345 kV 200 km overhead transmission line. The EMTP is used to generate fault current signals under different fault locations and fault inception angles. It is shown that the analytic method accurately measures the fundamental frequency component regardless of the characteristic frequency component as well as the DC-offset.

Development of an Adaptive Overcurrent Relaying Algorithm for Distribution Networks Embedding a Large Scaled Wind Farm

  • Jang, Sung-Il;Kim, Ji-Won;Kim, Kwang-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.198-205
    • /
    • 2003
  • This paper proposes the adaptive relaying of protective devices applied in the neighboring distribution feeders for reliable and efficient operations of a wind farm interconnected with distribution networks by dedicated lines. A wind farm connected to an electric power network is one of the greatest alternative energy sources. However, the wind turbine generators are influenced by abnormal grid conditions such as disturbances occurring in the neighboring distribution feeders as well as the dedicated power. Particularly, in cases of a fault happening in the neighboring distribution feeders, a wind farm might be accelerated until protective devices clear the fault. Therefore, the delayed operation time of protective devices for satisfying the coordination might overly expose the interconnected wind turbine generators to the fault and cause damage to them. This paper describes the proper delayed operation time of protective relay satisfying the coordination of the distribution networks as well as reducing damage on the interconnected wind farm. The simulation results for the Hoenggye substation model composed of five feeders and one dedicated line using PSCAD/EMTDC showed that the proper delayed time of protective devices reflecting the fault condition and the power output of the wind farm could improve the operational reliability, efficiency, and stability of the wind farm.

Quench Distribution in AU/YBCO Thin Film Meander Lines with a Au Meander Line Heater (금선 히터가 있는 금/YBCO 박막 선에서의 퀜치 분포)

  • Kim, H. R.;J. W. Shim;O. B. Hyun;J. M. Oh
    • Progress in Superconductivity
    • /
    • v.5 no.2
    • /
    • pp.118-123
    • /
    • 2004
  • We investigated quench distribution in AU/YBCO thin film meander lines with a heater. Quench distribution during faults is important for superconducting fault current limter applications, because uniform quench allows application of higher voltages across the meander lines. AU/YBCO thin films grown on sapphire substrates were patterned into meander lines by photolithography. Gold films grown on the rear sides of the substrates were also patterned into meander lines, and used as heaters. Meander lines on the front and the rear sides were connected in parallel. The meander lines were subjected to simulated AC fault currents for quench measurements during faults. They were immersed in liquid nitrogen during the experiment for effective cooling. Resistance of the AU/YBCO meander lines initially increased more rapidly with the rear heater than without, and consequently the fault current was limited more. The resistance subsequently became similar, The resistance distribution was more uniform with the heater, especially during the initial quench. Quench was completed more uniformly and significantly earlier. This resulted in uniform distribution of dissipated power. These results could be explained with the concept of quench propagation, which was accelerated by heat transfer across the substrate from the rear heater.

  • PDF

Incorporating Performance Degradation in Fault Tolerant Control System Design with Multiple Actuator Failures

  • Zhang, Youmin;Jiang, Jin;Theilliol, Didier
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.327-338
    • /
    • 2008
  • A fault tolerant control system design technique has been proposed and analyzed for managing performance degradation in the presence of multiple faults in actuators. The method is based on a control structure with a model reference reconfigurable control design in an inner loop and command input adjustment in an outer loop. The reduced dynamic performance requirements in the presence of different actuator faults are accounted for through different performance reduced (degraded) reference models. The degraded steady-state performances are governed by the reduced levels of command input. The reconfigurable controller is designed on-line automatically in an explicit model reference control framework so that the dynamics of the closed-loop system follow that of the performance reduced reference model under each fault condition. The reduced command input level is determined to prevent potential actuator saturation. The proposed method has been evaluated and analyzed using an aircraft example against actuator faults subject to constraints on the magnitude and slew-rate of actuators.

Grid faults characteristics simulation of inverter-fed induction generator (인버터 부착형 농형 유도발전기의 계통고장특성 모의)

  • Hong, Jitae;Kwon, Soonman;Kim, Chunkyung;Lee, Jongmoo;Cheon, Jongmin;Kim, Hong-Ju;Kim, Heeje
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.43.1-43.1
    • /
    • 2011
  • The detail simulation modeling of fully-fed induction generator is investigated through PC based MATLAB/Simulink environment. Generator's stator currents are controlled by indirect vector control method. In this method, generator side converter controls the maximum excitation (air gap flux) by stator d-axis current and controls generator torque by stator q-axis current. Induction generator speed is controlled by tip speed ratio (TSR) upon the wind speed variations in order to generate the maximum output power. The generator torque model is specified as a 3-blade wind turbine with rating, then, the model is simulated under normal operating condition and three different fault conditions. The matlab model designed for fully-fed induction generator based wind farm provides good performance under normal and grid fault conditions. It provides good results for different pwm techniques and fault conditions except the single-phase line to ground fault, which should be verified with real time data from wind farms.

  • PDF

Development of Arc Fault Circuit Interrupter Using the Distorted Voltage Wave in Electric Arc Faults (아크사고 발생 시 전압 왜형파를 이용한 아크차단기 개발)

  • Kwak, Dong-Kurl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.876-880
    • /
    • 2013
  • The major causes of electrical fire are classified to short circuit fault, overload fault, electric leakage and electric contact failure. The principal factor of the fire is electric arc or spark accompanied with such electric faults. Earth Leakage Circuit Breaker (ELB) and Molded_case Circuit Breaker (MCCB), that is, Residual Current Protective Devices (RCDs) used on low voltage distribution lines cut off earth leakage and overload, but the RCD can not cut off electric arc or spark to be a major factor of electrical fire. As the RCDs which are applied in low voltage distribution panel are prescribed to rated breaking time about 30[ms] (KS C 4613), the RCDs can't perceive to the periodic electric arc or spark of more short wavelength level. To improve such problems, this paper studies on an arc fault circuit interrupter (AFCI) using the distorted voltage wave in electric arc faults. The proposed voltage sensing type AFCI is an electrical fire prevention apparatus of new conception that operates a circuit breaker with sensing the instantaneous voltage drop of line voltage at electrical faults occurrence. The proposed AFCI is composed of control circuit topology using some semiconductor switching devices. Some experimental tests of the proposed AFCI confirm practicality and the validity of the analytical results.

Current limiting characteristics of the resistive SFCL using YBCO film (YBCO film을 이용한 저항형 초전도 한류기의 전류제한 특성)

  • Choi, Hyo-Sang;Kim, Hye-Rim;Hwang, Si-Dole;Hyun, Ok-Bae;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.277-280
    • /
    • 1999
  • We fabricated a resistive superconducting fault current limiter of two stripe meander type based on a YBCO film, and performed current limitation experiments. In order to disperse the heat generated at hot spots in the YBCO film the film was coated with a gold shunt layer. At $0^{\circ}$ fault angle the minimum quench current was $9.6 A_{peak}$(meander line cross section: $5{\times}10^{-6}cm^2$) and the fast quench time was 0.63 msec. The resistance of the limiter continued to increase for three cycles due to heat generation in the gold layer and was stabilized afterwards. At $45^{\circ}$ and $90^{\circ}$ the fast quench time were 0.56 msec and 0.26 msec, respectively. The quench time is believed to be reduced because faults occurred when the current was increasing or was at the peak value. With the limiter we could effectively limit the fault current about 1/5 times right after the fault and about 1/8.5 times three cycles after.

  • PDF