• Title/Summary/Keyword: Fault fracture zone

Search Result 71, Processing Time 0.02 seconds

Characterizing Fracture System Change at Boreholes in a Coastal Area in Korea for Monitoring Earthquake (지진감시를 위한 국내 해안지역 시추공 내 단열계 변화 특성)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Ok, Soon-Il;Cho, Hyunjin;Kim, Soo-Gin;Yun, Sul-Min
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Earthquake can change underground stress condition around the hypocenter and affect the fracture systems of the rocks. In Korea, the M5.8 Gyeongju earthquake on September 12, 2016 and M5.4 Pohang earthquake on November 15, 2017 occurred inside the Yangsan fault zone and possibly affected the fracture systems in the Yangsan fault zone and nearby rock masses. In this study, the characteristics of the fracture system (fracture orientation, number of the fractures, fracture spacing and aperture, dip angle, fracture density along depth, and relative rock strength) of the rocks in the low/intermediate level radioactive waste repository site located in the coastal area of the East Sea are analyzed by the impact of the Gyeongju and Pohang earthquakes using acoustic televiewer data taken from the boreholes at the radioactive waste repository site in 2005 and 2018. As a result of acoustic televiewer logging analysis, the fracture numbers, fracture aperture, and fracture density along depth overall increased in 2018 comparing to those in 2005. This increase tendency may be due to changes in the fracture system due to the impact of the earthquakes, or due to weathering of the wall of the boreholes for a long period longer than 10 years after the installation of the boreholes in 2005. In the borehole KB-14, on the whole, the orientation of the fractures and the average fracture spacing are slightly different between 2005 and 2018, while dip angle and relative rock strength in 2005 and 2018 are similar each other.

Fault-related Landforms and Geomorphological Processes Around Ungchon-Ungsang Areas in the Middle Part of the Dongrae Fault (동래 단층 중부 지역 웅촌-웅상 일대의 단층 지형과 지형 발달)

  • Lee, Gwang-Ryul;Park, Chung-Sun;Shin, Jae Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.79-91
    • /
    • 2019
  • This study analyzed the distribution of fluvial landforms, fault-related geomorphic features and lineaments around the area of Ungchon-Ungsang in the Dongrae Fault, and discusses the charateristics of geomorphic development based on those. As a result, the NE-SW lineaments are predominantly developed in many numbers within the study area, and the NW-SE or N-S secondary lineaments are developed induced by multiple deformation with the Yangsan Fault. Geomorphologically, the early tectonic history of the Ungchon-Ungsang basin is largely divided into three stages ; 1) the Tertiary fault activity and formation of fracture zone, 2) development of erosional basin, 3) local crustal movements and development of fault-related topography. It is assumed that alluvial fans, deflected channel and stream piracy were formed by local tectonic movements related to faultings during the Quaternary.

Application Techniques of 2D-Resistivity Structure for Estimation of Inferred Fracture Zone in Weathered Slope (풍화사면에서의 추정파쇄대 평가를 위한 2차원 전기비저항 구조도 적용 기법)

  • Kim, Jae-Hong;Park, Chal-Sook;Lee, Hyun-Jae;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • Electrical resistivity survey is applied for estimation of inferred fault and fractured zone in civil engineering and environment field. While 15 m diameter and 3 lines tunnels are excavated. It is recognized that core stone and fractured zone is existed in the weathered slope of the entrance to a tunnel. To make confirmation geological characteristics, dipole-dipole electric resistivity survey was carried out in weathered slope of the entrance to a tunnel. Core stone distribution and fracture zone characteristics are estimated by reverse analysis and 2D-resistivity structure using FDM.

Fracture Characteristics and Segmentation of Yangsan Fault around Mt. Namsan, Gyeongju City, Korea (경주 남산 일대의 단열구조 특성과 양산단층의 분절)

  • Kim, Heon-Joo;Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.51-61
    • /
    • 2009
  • Fractures and segmentation in association with the activities of the Yangsan fault are studied around Mt. Namsan, Gyengju city in the southeastern part of Korea. It is believed that the higher values of joint density and fractal dimension with the approach of the center of the Yangsan fault mean intense fracturing due to the fault activity. The boundary between fault damage zone and host rock is inferred to be placed at about 2.7 km from the center of the Yangsan fault where the values of joint density and fractal dimension abruptly decrease and the orientations of joint are also much dispersed. The small faults within the damage zone of the Yangsan fault are definitely divided into right-lateral and left-lateral strike-slip faults. The former is considered to be formed during the right-lateral movement of the Yangsan fault and the latter during the left-lateral movement. The Yangsan fault is segmented in the study area with obvious evidences as follows: (1) the difference of fault strike between northern and southern segments, (2) The geometry of contractional imbricate fans and syncline plunging $9^{\circ}$, $S85^{\circ}E$ at the end of northern segment, and (3) anticline plunging $28^{\circ}$, $N4^{\circ}W$ at the end of southern segment.

Sediment-hosted gold mineralization of the Kyaukpahto mine, Kawlin Township, Myanmar

  • Swe, Ye-Myint;Min, A-Ung;Lee, In-Sung
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.315-315
    • /
    • 2003
  • Gold mineralization at Kyaukpahto occurs as stockworks/disseminations and locally as breccia zones in silicified sandstones of Lower to Middle Eocene Male Formation of Myanmar. The mineralization is spatially related with NNE -trending fracture zones_probably tensional open fractures caused by the right-lateral Sagaing fault system. Intensive silicification, sericitization, argillic alteration, sulfidation, and decalcification are recognized in the Kyaukpahto mine area. (omitted)

  • PDF

경주시 감산사단층 부근에서의 탄성파 굴절법 조사

  • Kim, Gi-Yeong;Kim, Dong-Hun
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • In order to delineate distribution of the basement in the vicinity of a Quaternary fault outcrop near the Gamsansa temple in Gyeongju, we conducted a seismic refraction survey along a 188 m profile with a 4 m receiver interval. Through tomographic inversion, we define four layers with refraction velocities of approximately 350 m/s, 600 m/s, 1,100 m/s and 2,400 m/s, respectively. We depict a reversed fault at a location of 40 m apart from the base station of the profile and interpret a fracture zone related to fault movements in the NNW of the profile.

  • PDF

Analysis of the Causes of Clustered Scismicity Registered in Yeoncheon, the Middle Part of the Korean Peninsula through Gravity Field Interpretation and Modeling (중력이상 수치해석을 통한 연천지역 군발지진 원인분석)

  • Sungchan Choi;Sung-Wook Kim;Eun-Kyeong Choi;Younghong Shin;Tae-Kyung Hong
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.633-648
    • /
    • 2022
  • Gravity data were analyzed to identify the cause of clustered seismicity that occurred intensively in Yeoncheon, located in the central part of the Korean Peninsula. Our analysis suggests that the En echelon faults developed in the northwest-southeast direction. In addition, in the eastern part of the Dongducheon Fault, it was interpreted that high-density lower bedrock intermittently lifts close to the surface due to vertical tectonic movement accompanied by a flower structure. The fracture zone of the Dongducheon Fault is estimated that the width is about 200 m, the depth is at least 5 km, and the density is about 15% lower than the adjacent rocks. It is analyzed that the shallow earthquakes that occurred within 5 km depth was concentrated along the low-density En echelon fault fracture zone developed between the high-density rocks intruding close to the surface. Therefore, the earthquakes can be interpreted as the result that the north-south stress caused by the dextral tectonic movement of the Dongducheon Fault activated the En echelon fault in the northwest-southeast direction.

Development of Improved Rock Bolt for Reinforcement of Fracture Zone in Slope and Tunnel (사면 및 터널에서의 암반 파쇄대 보강을 위한 개량형 록볼트 개발)

  • Kim, Soo-Lo;Kim, Jong-Tae;Park, Seong-Cheol;Kim, Tae-Heok;Kwon, Hyun-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2010
  • There are many slopes generally developed by excavation and cut slope with small steps on massive slopes of roads. Especially these cut slopes which excavating around fault fracture zone need a reinforcement technology in order to ensure safety. In the case of slope excavation, it is difficult to use the existing slope support at fracture zone because of geological characteristics. Especially the factor of safety decreases significantly due to the movement of blocks in bed rocks and the expansion of interspace of discontinuous planes in fractured zones caused by excavation. Thus an efficient reinforcement technique in accordance with geological properties of fracture zones needs to be developed because the existing slope support has a restricted application. Therefore it is necessary to develop the specialized rock bolt technique in order to ensure an efficient factor of safety for anomalous fracture zones in slopes and tunnels. The purpose of this study is to develop newly improved rock bolt to increase a supporting effect of the swellex bolt method used recently as a friction type in fracture zones.

Characterization of Wetness Index in Western Area of Yangsan Fault, Sangbuk-myeon, Kyeongnam-do (경상남도 상북면 양산단층 서부지역에 대한 습윤지수 특성 연구)

  • Kim, Sung-Wook;Han, Ji-Young;Lee, Son-Kap;Kim, Sang-Hyun;Kim, Choon-Sik;Kim, In-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.904-909
    • /
    • 2004
  • The study area adjoins with Yangsan fault in Sangbuk-myeon, Samsam-ri, Kyongsang-namdo and consist of the natural steep slope. After drawing data layer which have altitude by using digital topography data, it is converted to lattice DEM of $10m{\times}10m$ size. From this, gradient map of unit lattice, slant direction map and shadow relif map are made. Using flow apportioning algorithm, upper slope contributing area and wetness index by established lattice can be calculated. Area that have high wetness index shows lineament structure of northwest-southeast direction, and this agrees with shear fracture system. The result of electricity specific resistance survey in the study area shows that area of high wetness index has low electricity specific resistance anomaly. That is, wetness index conforms with distribution of fractured zone that accompanied chemical weathering of rock. Therefore, wetness index can be used as the method of detecting fractured zones and judging the stability of the area.

  • PDF

Study on the Geological Characteristics and Slope Stability of Nammyeon reservoir in Bonghwa County, Kyungpook Province (경북 봉화군 남면저수지 일대의 지질특성 및 비탈면 안정성 검토)

  • Ihm, Myeong Hyeok;Park, Jin Young
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.77-88
    • /
    • 2017
  • The geology of the study area is composed mainly of conglomerate, sandstone, and shale and basalt. It is a rock that has been observed to move relatively recently through various brittle deformation and various stress fields during the recent period. To form a gentle terrain with severe crushing. The slope is located at the intersection of the Taegok Fault in the north-northeast direction and the Bukok Fault in the western north-west direction, and many faults, fault zones and fracture zones of various sizes are developed in the rock bed. In this study, the geological characteristics of the slope are investigated and the countermeasure method is suggested. It is suggested that periodical measurement and analysis should be performed by installing a measuring instrument according to each structure for safety management of the surrounding roads and grounds during construction or reinforcement by the countermeasure method for the slope of the study area.