• Title/Summary/Keyword: Fault diagnostic

Search Result 269, Processing Time 0.025 seconds

Study on Decomposition Gas Characteristics and Condition Diagnosis for Gas-Insulated Transformer by Chemical Analysis

  • Kim, Ah-Reum;Kwak, Byeong Sub;Jun, Tae-Hyun;Park, Hyun-Joo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.447-454
    • /
    • 2020
  • Since SF6 gas was discovered in the early 1900s, it has been widely used as an insulation material for electrical equipment. While various indicators have been developed to diagnose oil-immersed transformers, there are still insufficient indicators for the diagnosis of gas-insulated transformers. When necessary, chemical diagnostic methods can be used for gas-insulated transformers. However, the field suitability and accuracy of those methods for transformer diagnosis have not been verified. In addition, since various types of decomposition gases are generated therein, it is also necessary to establish appropriate analysis methods to cover the variety of gases. In this study, a gas-insulated transformer was diagnosed through the analysis of decomposition gases. Reliability assessments of both simple analysis methods suitable for on-site tests and precise analysis methods for laboratory level tests were performed. Using these methods, a gas analysis was performed for the internal decomposition gases of a 154 kV transformer in operation. In addition, simulated discharge and thermal fault experiments were demonstrated. Each major decomposition gas generation characteristics was identified. The results showed that an approximate diagnosis of the inside of a gas-insulated transformer is possible by analyzing SO2, SOF2, and CO using simple analysis methods on-site. In addition, since there are differences in the types of decomposition gas generation patterns with various solid materials of the internal transformer, a detailed examination should be performed by using precise analysis methods in the laboratory.

A Study on Intelligent Performance Diagnostics of a Gas Turbine Engine Using Neural Networks (신경회로망을 이용한 가스터빈 엔진의 지능형 성능진단에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.51-57
    • /
    • 2004
  • An intelligent performance diagnostic computer program of a gas turbine using the NN(Neural Network) was developed. Recently on-condition performance monitoring of major gas path components using the GPA(Gas Path Analysis) method has been performed in analyzing of engine faults. However because the types and severities of engine faults are various and complex, it is not easy that all fault conditions of the engine would be monitored only by the GPA approach Therefore in order to solve this problem, application of using the NNs for learning and diagnosis would be required. Among then, a BPN (Back Propagation Neural Network) with one hidden layer, which can use an updating learning rate, was proposed for diagnostics of PT6A-62 turboprop engine in this work.

Development of the High Reliable Safety PLC for the Nuclear Power Plants (고신뢰도 안전등급 제어기기 개발)

  • Son, Kwang-Seop;Kim, Dong-Hoon;Son, Choul-Woong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.109-119
    • /
    • 2013
  • This paper presents the design of the Safety Programmable Logic Controller (SPLC) used in the Nuclear Power Plants, an analysis of a reliability for the SPLC using a markov model. The architecture of the SPLC is designed to have the multiple modular redundancy composed of the Dual Modular Redundancy(DMR) and the Triple Modular Redundancy(TMR). The operating system of the SPLC is designed to have the non-preemptive state based scheduler and the supervisory task managing the sequential scheduling, timing of tasks, diagnostic and security. The data communication of the SPLC is designed to have the deterministic state based protocol, and is designed to satisfy the effective transmission capacity of 20Mbps. Using Markov model, the reliability of SPLC is analyzed, and assessed. To have the reasonable reliability such as the mean time to failure (MTTF) more than 10,000 hours, the failure rate of each SPLC module should be less than $2{\times}10^{-5}$/hour. When the fault coverage factor (FCF) is increased by 0.1, the MTTF is improved by about 4 months, thus to enhance the MTTF effectively, it is needed that the diagnostic ability of each SPLC module should be strengthened. Also as the result of comparison the SPLC and the existing safety grade PLCs, the reliability and MTTF of SPLC is up to 1.6-times and up to 22,000 hours better than the existing PLCs.

A Study on the Deterioration Diagnosis of 600V Shielded Twisted Pair Control/Measurement Cable using Resonance Frequency (케이블 공진을 이용한 600V 제어/계측용 꼬임쌍선 차폐 케이블의 열화상태 진단에 대한 연구)

  • Shin, JaeYoung;Kim, KwangHo;Nah, WanSoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1768-1775
    • /
    • 2015
  • Recent major domestic facilities, such as nuclear power plants, many control cables are installed and are degraded by long-term use, but research on deterioration diagnosis is lacking. In the event of a fault in the cable due to deterioration can be developed into a major accident such as the main plant is stopped, so the deterioration diagnostic techniques of high reliability for the cable is required. In this paper, proposes a methodology using a cable resonance that can effectively diagnose the deterioration of the cable. Prior to the test, we developed a setup for stable measuring the characteristics of the cable and it verified the suitable of the measurement set-up in terms of interactivity and reliability, also measured S-parameters applying verified measurement set-up to the cables that deterioration degree is different. Then, we had amplified the difference in resonance frequency between the healthy state and the deteriorated state using connection in a series of measured S-parameters. In a result from the method, we have verified that the more deteriorate the cables is, the more decrease the resonance frequency is. Measured results are justified by inducing the resonance frequency calculation of the cable from the S- parameters represented by the hyperbolic function formula. VNA(Vector Network Analyzer) for S-parameter measurements used in this study is Agilent E5061B and shielded twisted-pair cables was used for deterioration diagnostic test.

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

An Architecture for Managing Faulty Sensing Data on Low Cost Sensing Devices over Manufacturing Equipments (전문 설비의 이상신호 처리를 위한 저비용 관제 시스템 구축)

  • Chae, Yuna;Kim, Changi;Ko, Haram;Kim, Woongsup
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.3
    • /
    • pp.113-120
    • /
    • 2018
  • In this study, we proposed a monitoring system for identifying and handling faulty sensing stream data on manufacturing equipments where low-cost sensors can be safely used. Low cost sensors will lessen the cost of implementing distributed monitoring system, but suffer from sensor noises and inaccurate sensed data. Therefore, a distributed monitoring system with low cost sensors should identify faulty signal data as either of sensor fault or machine fault, and filter out faulty signals from sensing fault. To this end, we adopted a fourier transform based diagnostic approach mixed with a weighed moving averaging method, in order to identify faulty signals. We measured how effective our approach is and found out our approach can filter out one-third faulty signals from our experimental environment. In addition, we attached wireless communication modules to reduce sensor and network installation cost. To handle massive sensor data efficiently, we employed unstructured data format with NoSQL based database.

Instantaneous Frequency Estimation of the Gaussian Enveloped Linear Chirp Signal for Localizing the Faults of the Instrumental Cable in Nuclear Power Plant (가우시안 포락선 선형 첩 신호의 순시 주파수 추정을 통한 원전 내 계측 케이블의 고장점 진단 연구)

  • Lee, Chun Ku;Park, Jin Bae;Yoon, Tae Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.987-993
    • /
    • 2013
  • Integrity of the control and instrumental cables in nuclear power plant is important to maintain the stability of the nuclear power plants. In order to diagnose the integrity of the cables, the diagnostic methods based on reflectometry have been studied. The reflectometry is a non-destructive method and it is applicable to diagnose the live cables. We introduce a Gaussian enveloped linear chirp reflectometry to diagnose the cables in the nuclear power plants. In this paper, we estimate the instantaneous frequency of the Gaussian enveloped linear chirp signal by using the weighted robust least squares filtering to localize the impedance discontinuities in the class 1E instrumental cable.

A fault prevention diagnostic of power transformer using Frequency Response Analysis (주파수 응답 분석(FRA)을 이용한 전력용 변압기 고장예방 진단)

  • Cho, Yun-Haeng;Lim, Tae-Young;Kim, Jong-Seon;Kim, Gi-Il;Ahn, Kwang-Won;Lim, Seong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.463-464
    • /
    • 2011
  • Currently, different kinds of diagnosis and inspection technologies are applied to prevent the internal mechanical transformation of transformers. For example, examination of internal Partial Discharge of transformer, analysis of transformer oil gas, and measurement Frequency Response Analyzer(FRA) are used to diagnose defect. Especially, diagnosis technique through Frequency Response Analyzer(FRA) has been used and developed from 1960, when it was first introduced, till now to become an important tool to examine presence of defect and to prove quality of machines for the most electric machine producers electric power company in the world. However, diagnosis through FRA is still in introduction level in Korea and the application method for FRA is not established yet. For that reason, study about the application of domestic electric installation according to the FRA is needed. It is expected that the study play an important part in the prevention of defect due to the internal transformation of transformer by introducing measurement theory, providing measurement method, and analyzing application cases.

  • PDF

Design of Leakage Current Detecting Equipment of an Arrester Diagnostic Type in a Distribution Line (배전선로용 피뢰기 진단형 누설전류 검출장치 설계)

  • Yoon, Gi-Gab;Park, Jong-Beom;Yoon, Suk-Mu;Lee, Seung-Hak;Kim, Hong-Pil;Kim, Kwang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.501-503
    • /
    • 2000
  • Since an arrester has been generally used at the distribution line and abroad for the protection of electrical equipments against overvoltage (or abnormal surge) taking place in or from an electrical system, a fault, especially, in the distribution line is very likely to result in the destruction of insulation of other protection devices to cause an overall paralysis of a power system, a chaos. Considering the importance of arresters, its earlier replacement than its proposed life cycle causes an economical loss, and a negligence not to replace or repair it in time gives rise to a crucial accidence. The purpose of this paper is to invent an electric leakage current detector and to solve such problems by the continuous and regular inspection of an arrester.

  • PDF

Design and Development of a Functional Safety Compliant Electric Power Steering System

  • Lee, Kyung-Jung;Lee, Ki-Ho;Moon, Chanwoo;Chang, Hyuk-Jun;Ahn, Hyun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1915-1920
    • /
    • 2015
  • ISO 26262 is an international standard for the functional safety of electric and electronic systems in vehicles, and this standard has become a major issue in the automotive industry. In this paper, a functional safety compliant electronic control unit (ECU) for an electric power steering (EPS) system and a demonstration purposed EPS system are developed, and a software and hardware structure for a safety critical system is presented. EPS is the most recently introduced power steering technology for vehicles, and it can improve driver’s convenience and fuel efficiency. In conformity with the design process specified in ISO 26262, the Automotive Safety Integrity Level (ASIL) of an EPS system is evaluated, and hardware and software are designed based on an asymmetric dual processing unit architecture and an external watchdog. The developed EPS system effectively demonstrates the fault detection and diagnostic functions of a functional safety compliant ECU as well as the basic EPS functions.