• Title/Summary/Keyword: Fault diagnosis model

Search Result 315, Processing Time 0.024 seconds

Model-based Fault Diagnosis Using Quantized Vibration Signals (양자화된 진동신호를 이용한 모델기반 고장진단)

  • Kim, Do-Hyun;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.279-284
    • /
    • 2005
  • Knowledge based fault diagnosis has a limitation in determining the cause and scheme for the fault, because it detects faults from signal pattern only Therefore, model-based fault diagnosis is requested to determine the fault by analyzing output of the equipment from its dynamic model. This research shows a method how to devise the automaton of system as a model for normal and faulty condition through the reduction of handling data by quantization of vibration signals and the example which is concerning to the bearing of ATM. The developed model based fault diagnosis was applied to detect the faulty bearing of ATM, which results.

  • PDF

Fault diagnosis based on likelihood decomposition

  • Uosaki, Katsuji;Kagawa, Tetsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.272-275
    • /
    • 1992
  • A novel fault diagnosis method based on likelihood decomposition is proposed for linear stochastic systems described by autoregressive (AR) model. Assuming that at some time instant .tau. the fault of one of the following two types is occurs: innovation fault (actuator fault); and observation fault (sensor fault), the log-likelihood function is decomposed into two components based on the observations before and after .tau., respectively, Then, the type of the fault is determined by comparing the log-likelihoods corresponding two types of faults. Numerical examples demonstrate the usefulness of the proposed diagnosis method.

  • PDF

RNN-based integrated system for real-time sensor fault detection and fault-informed accident diagnosis in nuclear power plant accidents

  • Jeonghun Choi;Seung Jun Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.814-826
    • /
    • 2023
  • Sensor faults in nuclear power plant instrumentation have the potential to spread negative effects from wrong signals that can cause an accident misdiagnosis by plant operators. To detect sensor faults and make accurate accident diagnoses, prior studies have developed a supervised learning-based sensor fault detection model and an accident diagnosis model with faulty sensor isolation. Even though the developed neural network models demonstrated satisfactory performance, their diagnosis performance should be reevaluated considering real-time connection. When operating in real-time, the diagnosis model is expected to indiscriminately accept fault data before receiving delayed fault information transferred from the previous fault detection model. The uncertainty of neural networks can also have a significant impact following the sensor fault features. In the present work, a pilot study was conducted to connect two models and observe actual outcomes from a real-time application with an integrated system. While the initial results showed an overall successful diagnosis, some issues were observed. To recover the diagnosis performance degradations, additive logics were applied to minimize the diagnosis failures that were not observed in the previous validations of the separate models. The results of a case study were then analyzed in terms of the real-time diagnosis outputs that plant operators would actually face in an emergency situation.

Fault Diagnosis of a Rotating Blade using HMM/ANN Hybrid Model (HMM/ANN복합 모델을 이용한 회전 블레이드의 결함 진단)

  • Kim, Jong Su;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.814-822
    • /
    • 2013
  • For the fault diagnosis of a mechanical system, pattern recognition methods have being used frequently in recent research. Hidden Markov model(HMM) and artificial neural network(ANN) are typical examples of pattern recognition methods employed for the fault diagnosis of a mechanical system. In this paper, a hybrid method that combines HMM and ANN for the fault diagnosis of a mechanical system is introduced. A rotating blade which is used for a wind turbine is employed for the fault diagnosis. Using the HMM/ANN hybrid model along with the numerical model of the rotating blade, the location and depth of a crack as well as its presence are identified. Also the effect of signal to noise ratio, crack location and crack size on the success rate of the identification is investigated.

A Study on Real time Multiple Fault Diagnosis Control Methods (실시간 다중고장진단 제어기법에 관한 연구)

  • 배용환;배태용;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.457-462
    • /
    • 1995
  • This paper describes diagnosis strategy of the Flexible Multiple Fault Diagnosis Module for forecasting faults in system and deciding current machine state form sensor information. Most studydeal with diagnosis control stategy about single fault in a system, this studies deal with multiple fault diagnosis. This strategy is consist of diagnosis control module such as backward tracking expert system shell, various neural network, numerical model to predict machine state and communication module for information exchange and cooperate between each model. This models are used to describe structure, function and behavior of subsystem, complex component and total system. Hierarchical structure is very efficient to represent structural, functional and behavioral knowledge. FT(Fault Tree). ST(Symptom Tree), FCD(Fault Consequence Diagrapy), SGM(State Graph Model) and FFM(Functional Flow Model) are used to represent hierachical structure. In this study, IA(Intelligent Agent) concept is introduced to match FT component and event symbol in diagnosed system and to transfer message between each event process. Proposed diagnosis control module is made of IPC(Inter Process Communication) method under UNIX operating system.

  • PDF

Synthesis of the Fault-Causality Graph Model for Fault Diagnosis in Chemical Processes Based On Role-Behavior Modeling (역할-거동 모델링에 기반한 화학공정 이상 진단을 위한 이상-인과 그래프 모델의 합성)

  • 이동언;어수영;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.450-457
    • /
    • 2004
  • In this research, the automatic synthesis of knowledge models is proposed. which are the basis of the methods using qualitative models adapted widely in fault diagnosis and hazard evaluation of chemical processes. To provide an easy and fast way to construct accurate causal model of the target process, the Role-Behavior modeling method is developed to represent the knowledge of modularized process units. In this modeling method, Fault-Behavior model and Structure-Role model present the relationship of the internal behaviors and faults in the process units and the relationship between process units respectively. Through the multiple modeling techniques, the knowledge is separated into what is independent of process and dependent on process to provide the extensibility and portability in model building, and possibility in the automatic synthesis. By taking advantage of the Role-Behavior Model, an algorithm is proposed to synthesize the plant-wide causal model, Fault-Causality Graph (FCG) from specific Fault-Behavior models of the each unit process, which are derived from generic Fault-Behavior models and Structure-Role model. To validate the proposed modeling method and algorithm, a system for building FCG model is developed on G2, an expert system development tool. Case study such as CSTR with recycle using the developed system showed that the proposed method and algorithm were remarkably effective in synthesizing the causal knowledge models for diagnosis of chemical processes.

The Development of a Fault Diagnosis Model based on the Parameter Estimations of Partial Least Square Models (부분최소제곱법 모델의 파라미터 추정을 이용한 화학공정의 이상진단 모델 개발)

  • Lee, Kwang Oh;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.59-67
    • /
    • 2019
  • Since it is really hard to construct process models based on prior process knowledges, various statistical approaches have been employed to build fault diagnosis models. However, the crucial drawback of these approaches is that the solutions may vary according to the fault magnitude, even if the same fault occurs. In this study, the parameter monitoring approach is suggested. When a fault occurs in a chemical process, this leads to trigger the change of a process model and the monitoring parameters of process models is able to provide the efficient fault diagnosis model. A few important variables are selected and their predictive models are constructed by partial least square (PLS) method. The Euclidean norms of parameters of PLS models are estimated and a fault diagnosis can be performed as comparing with parameters of PLS models based on normal operational conditions. To improve the monitoring performance, cumulative summation (CUSUM) control chart is employed and the changes of model parameters are recorded to identify the type of an unknown fault. To verify the efficacy of the proposed model, Tennessee Eastman (TE) process is tested and this model can be easily applied to other complex processes.

Fault diagnosis of nuclear power plant sliding bearing-rotor systems using deep convolutional generative adversarial networks

  • Qi Li;Weiwei Zhang;Feiyu Chen;Guobing Huang;Xiaojing Wang;Weimin Yuan;Xin Xiong
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.2958-2973
    • /
    • 2024
  • Sliding bearings are crucial rotating mechanical components in nuclear power plants, and their failures can result in severe economic losses and human casualties. Deep learning provides a new approach to bearing fault diagnosis, but there is currently a lack of a universal fault diagnosis model for studying bearing-rotor systems under various operating conditions, speeds and faults. Research on bearing-rotor systems supported by sliding bearings is limited, leading to insufficient fault data. To address these issues, this paper proposes a fault diagnosis model framework for bearing-rotor systems based on a deep convolutional generative adversarial network (TF-DLGAN). This model not only exhibits outstanding fault diagnosis performance but also addresses the issue of insufficient fault data. An experimental platform is constructed to conduct fault experiments under various operating conditions, speeds and faults, establishing a dataset for sliding bearing-rotor system faults. Finally, the model's effectiveness is validated using this dataset.

Multiple-Fault Diagnosis for Chemical Processes Based on Signed Digraph and Dynamic Partial Least Squares (부호유향그래프와 동적 부분최소자승법에 기반한 화학공정의 다중이상진단)

  • 이기백;신동일;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.159-167
    • /
    • 2003
  • This study suggests the hybrid fault diagnosis method of signed digraph (SDG) and partial least squares (PLS). SDG offers a simple and graphical representation for the causal relationships between process variables. The proposed method is based on SDG to utilize the advantage that the model building needs less information than other methods and can be performed automatically. PLS model is built on local cause-effect relationships of each variable in SDG. In addition to the current values of cause variables, the past values of cause and effect variables are inputted to PLS model to represent the Process armies. The measured value and predicted one by dynamic PLS are compared to diagnose the fault. The diagnosis example of CSTR shows the proposed method improves diagnosis resolution and facilitates diagnosis of masked multiple-fault.

Fault Diagnosis Algorithm of an Air-conditioning System by using a Neural No-fault Model and a Dual Fuzzy Logic (신경망무고장모델과 이중퍼지로직을 사용한 냉방기 고장진단 알고리즘)

  • Han Do-Young;Jung Nam-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.791-799
    • /
    • 2006
  • The fault diagnosis technologies may be applied in order to decrease the energy consumption and the maintenance cost of an air-conditioning system. In this paper, a fault diagnosis algorithm was developed by using a neural no-fault model and a dual fuzzy logic. Five different faults, such as the compressor valve leakage, the liquid line blockage, the condenser fouling, the evaporator fouling, and the refrigerant leakage of an air-conditioning system, were considered. The fault diagnosis algorithm was tested by using a fault simulation facility. Test results showed that the algorithm developed for this study was effective to detect and diagnose various faults. Therefore, this algorithm may be practically used for the fault diagnosis of an air-conditioning system.