• Title/Summary/Keyword: Fault detection and isolation scheme

Search Result 50, Processing Time 0.029 seconds

A Fault-Tolerant Scheme for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기의 센서 이상허용 제어)

  • 류지수;이기상
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.366-376
    • /
    • 2002
  • A sensor fault detection and isolation scheme(SFDIS) is adopted to improve the reliability of direct torque controlled induction motor drives and the experimental results are discussed. Major contributions include: experimental analysis of a few important sensor faults. design and implementation of the proposed SFDIS, and the fault tolerant control system(FTCS). Although the adopted SFDIS employs only one observer for residual generation, the system has the function of fault isolation that only multiple observer schemes can have. To verify the performance of the proposed scheme, the speed control system is designed for the 2.2kW direct torque controlled Induction motor. Hardware of the control system consists of a control board using TMS320OVC33 and a power stack using IPM. Experimental results for various type of sensor faults show the effectiveness of the SFDIS and the FTCS.

A new residual generator for a Process FDIS (공정고장 검출식별시스템을 위한 잔차발생기구)

  • Lee, Kee-Sang;Park, Tae-Geon;Lee, Sang-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2014-2016
    • /
    • 2003
  • A new residual generation scheme that can be employed in the process fault detection and isolation systems for linear (control) systems is suggested. The scheme is very simple, but provides the same information for the detection and isolation of the anticipated faults as the conventional multiple observer based schemes. Application results show the practical feasibility of the proposed scheme.

  • PDF

Eigenstructure Assignment Method for Disturbance Suppression and Fault Isolation (외란 억제 및 고장 분리를 위한 고유구조 지정기법)

  • Seo, Young-Bong;Park, Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.357-362
    • /
    • 2002
  • The underlying principle of fault detection via unknown input observer is to make the state estimation error independent of disturbances(or unknown inputs). In this paper, we present a systematic method that can exactly assign the eigenstructure with disturbance suppression and fault isolation capability. A desired eigenstructure for both fault isolation and disturbance suppression is obtained by an optimization method. For the dual purposes, terms for fault isolation and far disturbance suppression are included in the employed objective function for the optimization. The proposed scheme is applied to a simple example to confirm the usefulness of the method.

Observer Design for Robust Process Fault Estimation (견실한 프로세스 고장추정을 위한 관측기 설계)

  • Park, Tae-Geon;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2182-2184
    • /
    • 2004
  • This paper presents a systematic and straightforward fault estimation approach for process fault detection. isolation and accommodation. The approach includes the design of a reduced-order observer and an algebraic-fault estimator. The observer is designed for an unknown input and fault-free system, which is obtained by coordinate transformations of original systems with unknown inputs and faults. The observer information is devoted to- the fault estimation for fault detection and isolation. The fault estimates can be used to form an additional control input to accommodate the fault. The suggested scheme is verified through simulation studies performed on the control of a vertical takeoff and landing (VTOL) aircraft in the vertical plane.

  • PDF

Fault Tolerant Control for Nonlinear Boiler System (비선형 보일러 시스템에서의 이상허용제어)

  • Yoon, Seok-Min;Kim, Dae-Woo;Lee, Myung-Eui;Kwon, O-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.254-260
    • /
    • 2000
  • This paper deals with the development of fault tolerant control for a nonlinear boiler system with noise and disturbance. The MCMBPC(Multivariable Constrained Model Based Predictive Control) is adopted for the control of the specific boiler turbin model. The fault detection and diagnosis are accomplished with the Kalman filter and two bias estimators. Once a fault is detected, two Bias estimators are driven to estimate the fault and to discriminate Process fault and sensor fault. In this paper, a fault tolerant control scheme combining MCMBPC with a fault compensation method based on the bias estimator is proposed. The proposed scheme has been applied to the nonlinear boiler system and shown a satisfactory performance through some simulations.

  • PDF

Speed and Current Sensor Fault Detection and Isolation Based on Adaptive Observers for IM Drives

  • Yu, Yong;Wang, Ziyuan;Xu, Dianguo;Zhou, Tao;Xu, Rong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.967-979
    • /
    • 2014
  • This paper focuses on speed and current sensor fault detection and isolation (FDI) for induction motor (IM) drives. A new, accurate and high-efficiency FDI approach is proposed so that a system can continue operating with good performance even in the presence of speed sensor faults, current sensor faults or both. The proposed three paralleled adaptive observers are capable of current sensor fault detection and localization. By using observers, the rotor flux and rotor speed can be estimated which allows the system to run under the speed sensorless vector control mode when a speed sensor fault occurs. In order to detect speed sensor faults, a threshold-based scheme is proposed. To verify the feasibility and effectiveness of the proposed FDI strategy, experiments are carried out under different conditions based on a dSPACE DS1104 induction motor drive platform.

Estimation of State-of-charge and Sensor Fault Detection of a Lithium-ion Battery in Electric Vehicles (전기자동차용 리튬이온전지를 위한 SOC 추정 및 센서 고장검출)

  • Han, Man-You;Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1085-1091
    • /
    • 2014
  • A model based SOC estimation scheme using parameter identification is described and applied to a Lithium-ion battery module that can be installed in electric vehicles. Simulation studies are performed to verify the effect of sensor faults on the SOC estimation results for terminal voltage sensor and load current sensor. The sensor faults should be detected and isolated as soon as possible because the SOC estimation error due to any sensor fault seriously affects the overall performance of the BMS. A new fault detection and isolation(FDI) scheme by which the fault of terminal voltage sensor and load current sensor can be detected and isolated is proposed to improve the reliability of the BMS. The proposed FDI scheme utilizes the parameter estimation of an input-output model and two fuzzy predictors for residual generation; one for terminal voltage and the other for load current. Recently developed dual polarization(DP) model is taken to develope and evaluate the performance of the proposed FDI scheme. Simulation results show the practical feasibility of the proposed FDI scheme.

Fault Diagnosis of motor driven pump system based on fuzzy inference (퍼지추론을 이용한 전동기구동 펌프시스템의 고장진단)

  • Cho, Yun-Seok;Ryu, Ji-Su;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.689-691
    • /
    • 1995
  • In this paper, a fault detection and isolation unit(FDIU) for a centrifugal pump system driven by DC-motor is proposed. The proposed scheme can be classified into the dedicated observer scheme(DOS). A fuzzy logic based inference engine is adopted for the isolation of each faults. Having the fuzzy inference engine, the proposed FDIU resolve a few important problems of the conventional DOSs with conventional two valued logic. The ouputs of the proposed FDIU are not "ith fault occurred" but the grade of memberships that indicate the consistency of observered symptoms(residuals) with each fault symptoms stored in the rule base. The ouputs can easily be transferred to the ranking of the fault possibilities and it will provide very useful informations in monitoring the process. The simulation results show that the FDIU has very good diagnostic ability even in the noisy environment.

  • PDF

Performance Improvement of MOS type FDIS using Fuzzy Logic (퍼지논리를 이용한 다중관측자 구조 FDIS의 성능개선)

  • Ryu, Ji-Su;Park, Tae-Geon;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.410-413
    • /
    • 1998
  • A passive approach for enhancing fault detection and isolation performance of multiple observer based fault detection isolation schemes(FDIS) is proposed. The FDIS has a hierarchical framework to perform detection and isolation of faults of interest, and diagnosis of process faults. The decision unit comprises of a rule base and fuzzy inference engine and removes some difficulties of conventional decision unit which includes crisp logic and threshold values. Emphasis is placed on the design and evaluation methods of the diagnostic rule base. The suggested scheme is applied for the FDIS design for a DC motor driven centrifugal pump system.

  • PDF

An Instrument Fault Detection Scheme using Function Observers (함수관측자를 이용한 장치고장검출 기법)

  • Lee, Sang-Moon;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.91-97
    • /
    • 2006
  • A major difficulty with the practical application of the multiple observer based IFDI schemes is the computational burden of the residual generation. In this paper, a new residual generator that employs function observers is proposed to reduce the computational burden, and the design methods of the IFDIS, equipped with the residual generator, are presented. The function observers employed in the residual generator can be considered as a dual of the unknown input (function) observer And it can be designed to estimate the measurement errors that are due to sensor faults. The error estimates are further processed to generate the residuals by which reliable fault detection/isolation result car be obtained. The proposed scheme is more useful, in real-time application, than any other multiple state observer based IFDISs. It can be effectively applied to fault tolerant control because the failure effects can be compensated by the use of the estimates of measurement errors. The proposed IFDI scheme is applied to an inverted pendulum control system for the IFDI of failed sensor and fault compensation.