• Title/Summary/Keyword: Fault Zone

Search Result 404, Processing Time 0.021 seconds

A Case Study of Analysis and Design for the Tunnel Stablization in Fault Zone by FRP Reinforced Grouting Method (FRP보강 그라우팅에 의한 단층대의 터널 안정성 분석 및 설계 사례 연구)

  • 박종호;최용기;박영목;권오엽;이재봉
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.121-128
    • /
    • 2001
  • This is a case study of stability analysis and reinforcement design for the tunnel where the collapse of the entrance slops occured along the fault zone developed in the bed rock. According to the site investigation, the main factor of sliding is the influence of fault gouge and heavy rainfall. Considering the in-situ condition, the versatile reinforcement methods is needed, and so the close investigation on the site area was accompanied with the stability analysis of tunnel and slops. The FRP(Fiberglass reinforced plastic) grouting method improved the defect of Steel Umbrella Arch Method, such as oxidation, low work efficiency, the material's heavy weight, is adapted as the reinforcement methods.

  • PDF

ANALYSIS OF THE CHARACTERISTICS ABOUT GYEONG-GANG FAULT ZONE THROUGH REMOTE SENSING TECHNIQUES

  • Hwang, Jin-Kyong;Choi, Jong-Kuk;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.196-199
    • /
    • 2008
  • Lineament is defined generally as a linear feature or pattern on interpretation of a satellite image and indicates the geological structures such as faults and fractures. For this reason, a lineament extraction and analysis using remote sensing images have been widely used for mapping large areas. The Gyeong-gang Fault is a NNE trending structure located in Gangwon-do and Kyeonggi-do district. However, a few geological researches on that fault have been carried out and its trace or continuity is ambiguous. In this study, we investigate the geologic features at Gyeong-gang Fault Zone using LANDSAT ETM+ satellite image and SRTM digital elevation model. In order to extract the characteristics of geologic features effectively, we transform the LANDSAT ETM+ image using Principal Component Analysis (PCA) and create a shade relief from SRTM data with various illumination angles. The results show that it is possible to identify the dimensions and orientations of the geologic features at Gyeong-gang Fault Zone using remote sensing data. An aerial photograph interpretation and a field work will be future tasks for more accurate analysis in this area.

  • PDF

A Case Study on Reinforcement of Cut Slope with Fault Zone (단층대가 발달한 사면의 보강대책에 관한 사례 연구)

  • Kim, Jeong-Ho;Park, Choon-Sik;Kim, Tae-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.930-937
    • /
    • 2008
  • From the result of precise field investigation and stability analysis for the cut slope, following results were acquired. 1. The cause of the collapse of cut slope came from circle sliding collapse by fault zone which remained inner weathering zone. 2. The existing destructed soil and rock can be removed by reinforcement. And to prevent the additional destruction, it is judged that applying the method after relaxing the slope would be reasonable. 3. To make cut slope stable, soft rock layer should be done cutting 1:1.5 and 1:2.0 ~ 1:2.5 for weathered rock and soil layer. 4. Heavy water leakage section should be applied horizontal drain method so that water pressure should not act to the cut slope.

  • PDF

A Study on the Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone Using the Static Bi-directional End Leading Test (양방향 선단재하시험을 이용한 단층파쇄대에 시공된 대구경 현장타설말뚝의 선단지지력 측정 연구)

  • 정창규;정성민;황근배;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.135-143
    • /
    • 2004
  • In the land section of marine bridge construction site, to confirm the end bearing of large diameter drilled shaft constructed in the fault zone which was discovered unexpectedly, the hi-directional end loading tests were performed. The objectives of this study are to confirm the end bearing of the pile constructed in fault zone and the increasing effect of end bearing after grouting the base ground beneath the pile toe. After grouting the pile base ground, the settlement of pile base decreased considerably and the pile base resistance increased more than twice.

What is the Faults? (단층이란 무엇인가?)

  • Lee, Byung-Joo;Cheong, Jang-Yeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.127-137
    • /
    • 2007
  • Faults are fractures along which there is visible offset by shear displacement parallel to the fracture surface. Faults can occur as single discrete breaks, but where the rock has been repeatedly faulted, or where the rock is especially weak, no discrete break may be evident. What forms instead is a fault zone composed of countless subparallel and interconnecting closely spaced fault surfaces. Faulting is fundamentally a brittle mechanism for achieving shear displacement. At deep crustal levels where rocks tend to deform plastically under conditions of elevated temperature and confining pressure, shear displacement is achieved by and development of shear zones. In this paper authors propose the fault grade in Korea.

  • PDF

Deep structure of Ulsan fault by electric and EM surveys in ipsil area, South of Kyeongju (전기, 전자탐사에 의한 경주남부 (입실지역)의 울산 단층 심부구조)

  • 손호응
    • Economic and Environmental Geology
    • /
    • v.32 no.2
    • /
    • pp.161-167
    • /
    • 1999
  • Electric and electromagnetic surveys were conducted to investigate the deep structure of the Ulsan fault in Ipsil area, south of Kyeongju. On this study, especially high-frequency magnetotelluric method of electromagnetic survey in the frequency range of 10~100,000 Hz was mainly employed to study the deep subsurface configuration. High-frequency MT survey was performed at 70 points of spacing 30~50 m, making 3.8 km survey line. As a survey result, a 2-km-depth 2-D cross-section was achieved. It shows vertical and horizontal subsurface variations of resistivity values. Near-surface layer having low resistivity value becomes thicker eastward up to 800m. There is a steep low resistivity zone in the west side of survey line, and there exists two low resistivity zones dipping west in the east side of survey line. Two low resistivity zones are interpreted to be related to major movement pattern of the Ulsan fault. This suggests that major fault lines are developed on both peripheral sides of the broad fault zone.

  • PDF

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

Effect of orientation of fracture zone on tunnel behavior during construction using model test (실내 모형실험을 통한 시공 중 파쇄대의 공간적 분포가 터널거동에 미치는 영향)

  • Cho, Yun-Gyu;Shin, Seung-Min;Chung, Eun-Mok;Choi, Jung-Hyuk;Yoo, Chung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.189-204
    • /
    • 2015
  • This paper presents the results of reduced scale model tests on the effect of fault zone characteristics on the tunnel deformation behavior. A series of model tests were carried out on deep tunnels considering different fault zone orientations and offset distance. The tunnelling process was simulated in the model tests using compressed air technique. During the tests, the tunnel and ground deformation were mainly monitored while reducing the pressure inside the tunnel and the relationship between the pressure level and the tunnel deformation were established. The results indicate that for a given offset distance the tunnel behavior is influenced the most when the fault zone dips vertically while smallest influence occurs when the fault zone dips 45 degrees.

Application of Geophysical Results to Designing Bridge over Large Fault (대규모 단층대를 통과하는 교량설계를 위한 물리탐사의 활용)

  • 정호준;김정호;박근필;최호식;김기석;김종수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.245-248
    • /
    • 2001
  • During the core drilling for the design of a railway bridge crossing over the inferred fault system along the river, fracture zone, extends vertically more than the bottom of borehole, filled with fault gouge was found. The safety of bridge could be threatened by the excessive subsidence or the reduced bearing capacity of bedrock, if a fault would be developed under or around the pier foundation. Thus, a close examination of the fault was required to rearrange pier locations away from the fault or to select a reinforcement method if necessary. Geophysical methods, seismic reflection method and electrical resistivity survey over the water covered area, were applied to delineate the weak zone associated with the fault system. The results of geophysical survey clearly showed a number of faults extending vertically more than 50m. Reinforcement was not desirable because of the high cost and the water contamination, etc. The pier locations were thus rearranged based on the results of geophysical surveys to avoid the undesirable situations, and additional core drillings on the rearranged pier locations were carried out. The bedrock conditions at the additional drilling sites turned out to be acceptable for the construction of piers.

  • PDF

Laboratory chamber test for prediction of hazardous ground conditions ahead of a TBM tunnel face using electrical resistivity survey (전기비저항 탐사 기반 TBM 터널 굴진면 전방 위험 지반 예측을 위한 실내 토조실험 연구)

  • Lee, JunHo;Kang, Minkyu;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.451-468
    • /
    • 2021
  • Predicting hazardous ground conditions ahead of a TBM (Tunnel Boring Machine) tunnel face is essential for efficient and stable TBM advance. Although there have been several studies on the electrical resistivity survey method for TBM tunnelling, sufficient experimental data considering TBM advance were not established yet. Therefore, in this study, the laboratory-scale model experiments for simulating TBM excavation were carried out to analyze the applicability of an electrical resistivity survey for predicting hazardous ground conditions ahead of a TBM tunnel face. The trend of electrical resistivity during TBM advance was experimentally evaluated under various hazardous ground conditions (fault zone, seawater intruded zone, soil to rock transition zone, and rock to soil transition zone) ahead of a tunnel face. In the course of the experiments, a scale-down rock ground was provided using granite blocks to simulate the rock TBM tunnelling. Based on the experimental data, the electrical resistivity tends to decrease as the tunnel approaches the fault zone. While the seawater intruded zone follows a similar trend with the fault zone, the resistivity value of the seawater intrude zone decreased significantly compared to that of the fault zone. In case of the soil-to-rock transition zone, the electrical resistivity increases as the TBM approaches the rock with relatively high electrical resistivity. Conversely, in case of the rock-to-soil transition zone, the opposite trend was observed. That is, electrical resistivity decreases as the tunnel face approaches the rock with relatively low electrical resistivity. The experiment results represent that hazardous ground conditions (fault zone, seawater intruded zone, soil-to-rock transition zone, rock-to-soil transition zone) can be efficiently predicted by utilizing an electrical resistivity survey during TBM tunnelling.