• Title/Summary/Keyword: Fault Zone

Search Result 405, Processing Time 0.028 seconds

A Study of Fault Site at Byeonggok-myeon, Yeongdeok-gun, South Korea (영덕군 병곡면의 단층 노두 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.63-83
    • /
    • 2021
  • In the southeastern part of the Korean Peninsula, the Yangsan Fault, an active fault zone, has developed. Many earthquakes occur around these faults, and the possibility of earthquakes occurring along the branch faults is being discussed. On the other hand, the Yeongdeok Fault is reported in Yeongdeok-gun, which is the northern part of the Yangsan fault. In this study, goemorphic characteristics of a set faults found on the outcrop of the gentle slope of the coast of Byeonggok-myeon were analyzed and granulometric and geochemical characteristics of sediments and other materials, including fault gouges were analyzed. The outcrop of Byeonggok-myeon is the part of the fault core and can be divided into two parts. Theses fault are formed on the upper part of the Mesozoic bedrock and the tertiary sedimentary layer of red sand-supported clasts are covered in several sedimentary units. The faults were normal fault sets, and a number of vertical cracks were developed, and glossy surfaces were observed in the fault area. It appears that these faults have occurred after alluvial deposition had been formed. In the case of samples from fault gouges, there were differences in particle size and geochemical characteristics from the surrounding area.

Estimation of the Deformation Modulus for a Fault Zone using Crown Settlements Measured During Tunnel Excavation (터널 굴착 중 측정된 천단변위를 이용한 단층대의 변형계수 산정)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Song, Gyu-Jin;Seo, Yong-Seok;Kim, Ji-Soo;Woo, Sang-Baik
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.227-235
    • /
    • 2014
  • The deformation modulus is one of the essential factors in determining ground behavior and safety during tunnel excavation. In this study, we conducted a back-analysis using crown settlements measured during tunnel excavation, using a horizontal inclinometer on a fault zone of pegmatite, and calculated the deformation modulus of the fault zone. This deformation modulus calculation was then compared with deformation moduli found through established relationships that use the correlation between RMR and the deformation modulus, as well as the results of pressure-meter tests. The deformation moduli calculated by back-analysis differs significantly from the deformation moduli determined through established relationships, as well as the results from pressure-meter tests conducted across the study area. Furthermore, the maximum crown settlements derived from numerical analysis conducted by applying deformation moduli determined by these established relationships and the pressure-meter tests produced noticeable differences. This result indicates that in the case of a weak rock mass, such as a fault zone, it is inappropriate to estimate the deformation modulus using preexisting relationships, and caution must be taken when considering the geological and geotechnical characteristics of weak rock.

Model-based fault diagnosis methodology using neural network and its application

  • Lee, In-Soo;Kim, Kwang-Tae;Cho, Won-Chul;Kim, Jung-Teak;Kim, Kyung-Youn;Lee, Yoon-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.127.1-127
    • /
    • 2001
  • In this paper we propose an input/output model based fault diagnosis method to detect and isolate single faults in the robot arm control system. The proposed algorithm is functionally composed of three main parts-parameter estimation, fault detection, and isolation, When a change in the system occurs, the errors between the system output and the estimated output cross a predetermined threshold, and once a fault in the system is detected, and in this zone the estimated parameters are transferred to the fault classifier by ART2(adaptive resonance theory 2) neural network for fault isolation. Since ART2 neural network is an unsupervised neural network fault classifier does not require the knowledge of all possible faults to isolate the faults occurred in the system. Simulations are carried out to evaluate the performance of the proposed ...

  • PDF

Interpretation of recent topographic changes using the DEM data in the eastern part of Ulsan fault zone (DEM자료를 이용한 울산단층대 동부지역의 최근 지형변화 해석)

  • 신정환;최원학;장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.11-18
    • /
    • 2002
  • The Ulsan fault with NNW-SSE strike is a very wide and long lineament about 50km along Gyeungju-Ulsan line in the southeastern part of Korea. According to previous studies the Ulsan fault was not considered as a fault but only long lineament since no displacement was found along the lineament. Recently several Quaternary faults were reported in the northeastern part of lineament, which implies the neotectonic movement in this area. We analysed drainage pattern and stream gradient using the DEM (Digital Elevation Model) data for both side of Ulsan fault line to check the recent topographic changes which indicate neotectonic movement. The result shows that stream index in the eastern part of Ulsan fault is higher than the one in the western part. This means that recent tectonic movement is more active in the eastern part of Ulsan fault.

  • PDF

Preliminary Structural Segmentation of the Yangsan Fault (양산단층의 구조적 분절화 기초연구)

  • 장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.49-56
    • /
    • 1997
  • Most large strike-slip faults do not rupture their entire length during single faulting but generally break in segments which are different in location and time of faulting. Studies related to the development of the Yangsan fault have been reported based on partial results from characteristics of geolgocial distribution, geophysical prospecting and paleostress analyses. This paper shows, based on preliminary results, that the Yangsan fault could be divided into four structural areas along entire length. These areas are different in geological distribution, bedding attitude measured from sedimentary rocks, strike of main fault, geometry of small faults, termination types of fault tips, cyclic variation of fault zone width, and arrangement of paleostress. Therefore, the Yangsan fault could be divided into at least four segments.

  • PDF

Distance Relaying Algorithm for Intertie Protection of a Wind Farm Considering the Fault Ride-through Requirement (Fault ride-through 요구를 고려한 풍력발전단지 연계선 보호 거리계전 알고리즘)

  • Kang, Yong-Cheol;Kang, Hae-Gweon;Zheng, Tai-Ying;Kim, Yeon-Hee;Lee, Young-Gui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1053-1058
    • /
    • 2010
  • A large modern wind farm should satisfy the requirements for a grid and accomplish the optimization of the wind farm system. The wind farm intertie protection system should consider a Fault Ride-Through (FRT) requirement for more reliable protection. The wind farm should keep connected to the grid in the case of a grid fault whilst it should be isolated for an intertie fault. This paper proposes a distance relaying algorithm suitable for wind farm intertie protection considering the FRT requirement. The proposed algorithm estimates the impedance based on a differential equation method because the frequency of the voltage and current deviates the nominal frequency. The algorithm extends the reach of Zone 1 up to 100 % of the length of the intertie to implement the FRT requirement. To discriminate an intertie fault from a grid fault, the algorithm uses a voltage blocking scheme because the magnitude of the voltage at the relaying point for an intertie fault becomes less than that for a grid fault. The performance of the algorithm is verified using a PSCAD/EMTDC simulator under various fault conditions. The algorithm can discriminate successfully the intertie fault from grid fault and thus helps to implement the FRT requirement of a wind farm.

A Study for the Improvement of the Fault Decision Capability of FRTU using Discrete Wavelet Transform and Neural Network (이산 웨이블릿 변환과 신경회로망을 이용한 FRTU의 고장판단 능력 개선에 관한 연구)

  • Hong, Dae-Seung;Ko, Yoon-Seok;Kang, Tae-Ku;Park, Hak-Yeol;Yim, Hwa-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1183-1190
    • /
    • 2007
  • This paper proposes the improved fault decision algorithm using DWT(Discrete Wavelet Transform) and ANNs for the FRTU(Feeder Remote Terminal Unit) on the feeder in the power distribution system. Generally, the FRTU has the fault decision scheme detecting the phase fault, the ground fault. Especially FRTU has the function for 2000ms. This function doesn't operate FI(Fault Indicator) for the Inrush current generated in switching time. But it has a defect making it impossible for the FI to be operated from the real fault current in inrush restraint time. In such a case, we can not find the fault zone from FI information. Accordingly, the improved fault recognition algorithm is needed to solve this problem. The DWT analysis gives the frequency and time-scale information. The neural network system as a fault recognition was trained to distinguish the inrush current from the fault status by a gradient descent method. In this paper, fault recognition algorithm is improved by using voltage monitoring system, DWT and neural network. All of the data were measured in actual 22.9kV power distribution system.

The movement history of the southern part of the Yangsan Fault Zone interpreted from the geometric and kinematic characteristics of the Sinheung Fault, Eonyang, Gyeongsang Basin, Korea (언양 신흥단층의 기하학적.운동학적 특성으로부터 해석된 경상분지 양산단층대 남부의 단층운동사)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-30
    • /
    • 2009
  • The main fault of Yangsan Fault Zone (YFZ) and Quaternary fault were found in a trench section with NW-SE direction at an entrance of the Sinheung village in the northern Eonyang, Ulsan, Korea. We interpreted the movement history of the southern part of the YFZ from the geometric and kinematic characteristics of basement rock's fault of the YFZ (Sinheung Fault) and Quaternary fault (Quaternary Sinheung Fault) investigated at the trench section. The trench outcrop consists mainly of Cretaceous sedimentary rocks of Hayang Group and volcanic rocks of Yucheon Group which lie in fault contact and Quaternary deposits which unconformably overlie these basement rocks. This study suggests that the movement history of the southern part of the YFZ can be explained at least by two different strike-slip movements, named as D1 and D2 events, and then two different dip-slip movements, named as D3 and D4 events. (1) D1 event: a sinistral strike-slip movement which caused the bedding of sedimentary rocks to be high-angled toward the main fault of the YFZ. (2) D2 event: a dextral strike-slip movement slipped along the high-angled beddings as fault surfaces. The main characteristic structural elements are predominant sub-horizontal slickenlines and sub-vertical fault foliations which show a NNE trend. The event formed the main fault rocks of the YFZ. (3) D3 event: a conjugate reverse-slip movement slipped along fault surfaces which trend (E)NE and moderately dip (S)SE or (N)NW. The slickenlines, which plunge in the dip direction of fault surfaces, overprint the previous sub-horizontal slickenlines. The fault is characterized by S-C fabrics superimposed on the D2 fault gouges, fault surfaces showing ramp and flat geometry, asymmetric and drag folds and collapse structures accompanied with it. The event dispersed the orientation of the main fault surface of the YFZ. (4) D4 event: a Quaternary reverse-slip movement showing a displacement of several centimeters with S-C fabrics on the Quternary deposits. The D4 fault surfaces are developed along the extensions of the D3 fault surfaces of basement rocks, like the other Quaternary faults within the YFZ. This indicates that these faults were formed under the same compression of (N)NW-(S)SE direction.

A study on optimal planning of risk reduction for water suspension in water pipe system using fault tree analysis (결함트리분석을 이용한 상수관망 단수 리스크 저감 최적 방안 연구)

  • Choi, Tae Ho;Kim, A Ri;Kim, Min Cheol;Koo, Ja Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.6
    • /
    • pp.699-711
    • /
    • 2014
  • This study was carried out to analyze water suspension in the water supply system through fault tree analysis. And quantitative factors was evaluated to minimize water suspension. Consequently the aim of this study is to build optimal planning by analyzing scenarios for water suspension. Accordingly the fault tree model makes it possible to estimate risks for water suspension, current risks is $92.23m^3/day$. The result of scenario analysis by pipe replacement, risks for water suspension was reduced $7.02m^3/day$ when replacing WD4 pipe. As a result of scenario analysis by water district connections, the amount of risk reduction is maximized when it is connecting to network pipe of D Zone. Therefore, connecting to network pipe for D Zone would be optimal to reduce risk for water suspension.

Comparative Analysis of Fault Prediction with Horizontal and Longitudinal Displacements on Tunnel (터널 굴진면 수평변위와 천단변위를 이용한 단층대 예측방법의 비교·분석)

  • Yun, Hyun-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.403-411
    • /
    • 2016
  • A three-dimensional finite element analysis was conducted to analyze the predictable distances of a fault zone by using longitudinal displacement on tunnel face, trend line, L/C ratio, and C/C0 ratio at tunnel crown. The analysis used 28 numerical models with various fault attitudes. As a result, those faults that have drives with dip could be predicted earliest in L/C and C/C0 ratio analysis. And those faults that have drives against dip could be predicted earliest in L/C ratio and longitudinal displacement analysis. In addition, the fault zone ahead of tunnel was predicted in most models by using longitudinal displacement, trend line, L/C ratio, and C/C0 ratio. However, the longitudinal displacement among these methods may be most usefully predict a fault zone since it is displacements can be measured immediately after tunnel excavation.