• Title/Summary/Keyword: Fault Restoration

Search Result 101, Processing Time 0.024 seconds

A Study on the Expert System for the Fault Diagnosis in a Power System (전력계통의 고장진단 전문가 시스템에 관한 연구)

  • 박영문;이흥재
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1021-1028
    • /
    • 1990
  • This paper deals with the development of an expert system for the fault diagnosis in a power system. The expert system is designed to estimate the fault sections with explanation about the propagation of the faults through the identification of false operation of protective devices. The identification of black-out area is also considered to assist the restoration process. As for the inference scheme, backward chaining method is adopted and the search space is reduced for the better performance. The expert system was developed using PROLOG language. Its application to a sample power system showed satisfactory result.

A Study on the Restoration System for Distribution Networks Using Dynamic Division Method (동적분할 기법을 이용한 배전망의 정전복구 시스템에 관한 연구)

  • 임찬호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.64-72
    • /
    • 2003
  • Comparing with transmission networks, the faults in distribution networks more often occurs because of the complicated structure and the adjacency to customers. Moreover the faults give direct damage to customers. So fault diagnosis and blackout restoration in distribution networks are very important elements to reduce the damage of customers and to maintain the stability. The restoration problem of distribution networks is subject to time. Minimizing the switching numbers in restoration process is the crucial element. In other words. the best restoration is to restore all blackout area through just one switching, if not the restoration has to be accomplished through several switching. This paper proposes the efficient restoration system in distribution networks to minimize the switching numbers. The proposed system uses the dynamic division method of hierarchical structure which consists of heuristic searching method and meta algorithm. The proposed system is applied to the sample networks, and the results showed a promising possibility.

Development of Enhanced Real-Time Service Restoration Algorithm for Distribution Automation System (실 배전계통 자동화를 위한 개선된 고장복구 알고리즘 개발)

  • Oh, H.J.;Mun, K.J.;Kim, H.S.;Seo, J.I.;Hwang, G.H.;Park, J.H.;Lim, S.I.;Ha, B.N.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.159-161
    • /
    • 2000
  • This paper presents a GA for service restoration in electric power distribution systems. The aim of the service restoration is to restore service with maximizing the amount of total load restored while minimizing the number of required switch operation when a fault or overload occurs in distribution system. This paper develops GA for service restoration problem with constrained multi-objective optimization problem. The results show the effectiveness of the proposed method for solving the problem.

  • PDF

PC Cluster based Parallel Adaptive Evolutionary Algorithm for Service Restoration of Distribution Systems

  • Mun, Kyeong-Jun;Lee, Hwa-Seok;Park, June-Ho;Kim, Hyung-Su;Hwang, Gi-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.435-447
    • /
    • 2006
  • This paper presents an application of the parallel Adaptive Evolutionary Algorithm (AEA) to search an optimal solution of the service restoration in electric power distribution systems, which is a discrete optimization problem. The main objective of service restoration is, when a fault or overload occurs, to restore as much load as possible by transferring the de-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints. This problem has many constraints and it is very difficult to find the optimal solution because of its numerous local minima. In this investigation, a parallel AEA was developed for the service restoration of the distribution systems. In parallel AEA, a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner are used in order to combine the merits of two different evolutionary algorithms: the global search capability of the GA and the local search capability of the ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. After AEA operations, the best solutions of AEA processors are transferred to the neighboring processors. For parallel computing, a PC cluster system consisting of 8 PCs was developed. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based fast Ethernet. To show the validity of the proposed method, the developed algorithm has been tested with a practical distribution system in Korea. From the simulation results, the proposed method found the optimal service restoration strategy. The obtained results were the same as that of the explicit exhaustive search method. Also, it is found that the proposed algorithm is efficient and robust for service restoration of distribution systems in terms of solution quality, speedup, efficiency, and computation time.

Packet Lossless Fast Rerouting Scheme without Buffer Delay Problem in MPLS Networks (MPLS망에서 버퍼지연 문제가 발생하지 않는 무손실 Fast Rerouting 기법)

  • 신상헌;신해준;김영탁
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.2
    • /
    • pp.233-241
    • /
    • 2004
  • In this paper, we propose a packet-lossless fast rerouting scheme at a link/node fault in MPLS (Multiprotocol Label Switching) network with minimized accumulated buffer delay problem at ingress node. The proposed scheme uses a predefined, alternative LSP (Label Switched Path) In order to restore user traffic. We propose two restoration approaches. In the first approach, an alternative LSP is initially allocated with more bandwidth than the protected working LSP during the failure recovery phase. After the failure recovery, the excessively allocated bandwidth of the alternative LSP is readjusted to the bandwidth of the working LSP. In the second approach, we reduce the length of protected working LSP by using segment-based restoration. The proposed approaches have merits of (ⅰ) no buffer delay problem after failure recovery at ingress node, and (ⅱ) the smaller required buffer size at the ingress node than the previous approach.

A Study on MPLS OAM Functions for Fast LSP Restoration on MPLS Network (MPLS 망에서의 신속한 LSP 복구를 위한 MPLS OAM 기능 연구)

  • 신해준;임은혁;장재준;김영탁
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7C
    • /
    • pp.677-684
    • /
    • 2002
  • Today's Internet does not have efficient traffic engineering mechanism to support QoS for the explosive increasing internet traffic such as various multimedia traffic. This functional shortage degrades prominently the quality of service, and makes it difficult to provide multi-media service and real-time service. Various technologies are under developed to solve these problems. IETF (Internet Engineering Task Force) developed the MPLS (Multi-Protocol Label Switching) technology that provides a good capabilities of traffic engineering and is independent layer 2 protocol, so MPLS is expected to be used in the Internet backbone network$\^$[1][2]/. The faults occurring in high-speed network such as MPLS, may cause massive data loss and degrade quality of service. So fast network restoration function is essential requirement. Because MPLS is independent to layer 2 protocol, the fault detection and reporting mechanism for restoration should also be independent to layer 2 protocol. In this paper, we present the experimental results of the MPLS OAM function for the performance monitoring and fault detection 'll'&'ll' notification, localization in MPLS network, based on the OPNET network simulator

A Study on Development of a New Algorithm to Solve Load Flow for Distribution Systems (배전계통조류계산을 위한 새로운 알고리즘에 관한 연구)

  • Moon, Young-Hyun;Yoo, Sung-Young;Choi, Byoung-Kon;Ha, Bock-Nam;Lee, Joong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.918-922
    • /
    • 1998
  • With the development of industry, the qualitical advancement of power is needed. Since it is placed in the end step of power system, the fault at the distribution system causes some users blackout directly. So if the fault occurs, quick restoration is very important subject and, for the reason, induction of the distribution automation system is now being progressed briskly. For the quick restoration of the faulted distribution system, the load shedding of the blackout-area must be followed, and the other problems like the shedded load, faulted voltage and the rest may cause other accident. Accordingly load shedding must be based on the precise calculation technique during the distribution system load flow(dist flow) calculation. In these days because of its superior convergence characteristic the Newton-Raphson method is most widely used. The number of buses in the distribution system amounts to thousands, and if the fault occurs at the distribution system, the speed for the dist flow calculation is to be improved to apply to the On-Line system. However, Newton-Raphson method takes much time relatively because it must calculate the Jacobian matrix and inverse matrix at every iteration, and in the case of huge load, the equation is hard to converge. In this thesis. matrix equation is used to make algebraical expression and then to solve load flow equation and to modify above defects. Then the complex matrix is divided into real part and imaginary part to keep sparcity. As a result time needed for calculation diminished. Application of mentioned algorithm to 302 bus, 700 bus, 1004 bus system led to almost identical result got by Newton-Raphson method and showed constant convergence characteristic. The effect of time reduction showed 88.2%, 86.4%, 85.1% at each case of 302 bus, 700 bus system 86.4%, and 1004 bus system.

  • PDF

A Study on Fault-Tolerant System Construction Algorithm in General Network (일반적 네트워크에서의 결함허용 시스템 구성 알고리즘에 관한 연구)

  • 문윤호;김병기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.6
    • /
    • pp.1538-1545
    • /
    • 1998
  • System reliability has been a major concern since the beginning age of the electronic digital computers. One of the modest ways of increasing reliability is to design fault-tolerant system. This paper propose a construction mechanism of fault-tolerant system for the general graph topology. This system has several spare nodes. Up to date, fault-tolerant system design is applied only to loop and tree networks. But they are very limited cases. New algorithm of this paper tried to have a capability which can be applied to any kinds of topologies without such a many restriction. the algorithm consist of several steps : minimal diameter spaning tree extraction step, optimal node decision step, original connectivity restoration step and finally redundancy graph construction step.

  • PDF

PC Cluster Based Parallel Genetic Algorithm-Tabu Search for Service Restoration of Distribution Systems (PC 클러스터 기반 병렬 유전 알고리즘-타부 탐색을 이용한 배전계통 고장 복구)

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.375-387
    • /
    • 2005
  • This paper presents an application of parallel Genetic Algorithm-Tabu Search (GA-TS) algorithm to search an optimal solution of a service restoration in distribution systems. The main objective of service restoration of distribution systems is, when a fault or overload occurs, to restore as much load as possible by transferring the do-energized load in the out of service area via network reconfiguration to the appropriate adjacent feeders at minimum operational cost without violating operating constraints, which is a combinatorial optimization problem. This problem has many constraints with many local minima to solve the optimal switch position. This paper develops parallel GA-TS algorithm for service restoration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solutions of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper $10\%$ of the population to enhance the local searching capabilities. With migration operation, best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC cluster system consists of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through ethernet switch based fast ethernet. To show the validity of the proposed method, proposed algorithm has been tested with a practical distribution system in Korea. From the simulation results, we can find that the proposed algorithm is efficient for the distribution system service restoration in terms of the solution quality, speedup, efficiency and computation time.

An Expert System for Fault Restoration in Distribution System (배전 계통에서의 사고 복구를 위한 전문가 시스템)

  • Choi, B.Y.;Kim, S.H.;Lee, Y.S.;Moon, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.171-174
    • /
    • 1990
  • When load areas on a feeder are deenergized due to faults,operaters need to identify nelghboring feeders, try to restore customers and minimize out-of-service areas. These cases include knowledge of system states and various constraints such as voltage drop. This paper concerns the load transfer infault restoration. Also, it is considered the operating constraints such as line current capacity, relay trip current, transformer capacity, voltage drop and line loss. The expert system is able to propose the optimal load transfer method by anallzing system states and considering constraints.

  • PDF