• 제목/요약/키워드: Fault Monitoring

검색결과 705건 처리시간 0.031초

CNC 실장 고장진단 및 원격 서비스 기술 개발 (Development of fault diagnosis and tole-service technology for CNC implementation)

  • 김동훈;김선호;김도연;윤원수;김찬봉
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2002
  • The diagnosis of faults of machine tool, which is controlled by CNC and PLC, is generally based on ladder diagram of PLC. Because sequential controls for CNC and servo motor are mostly processed in PLC. However, when fault is occurred, a searching for logical relation to fault reasons is required a lot of fault experiences and times, because PLC program has step structure. In this paper, FDS(Fault Diagnosis System) is developed and implemented to machine tool with open architecture controller in order to find the reason of fault lastly and correctly. The diagnosed reasons for fault are tele-serviced on web through developed RSS(Remote Service System). The operationability and usefulness of developed system are evaluated on specially manufactured machine tool with open architecture CNC. The results of this research can be the model of remote monitoring and fault diagnosis system of machine tool with open architecture CNC.

  • PDF

A Realization Method of Fault-tolerant Control of Flexible Arm under Sensor Fault by Using an Adaptive Sensor Signal Observer

  • Izumikawa Yu;Yubai Kazuhiro;Hirai Junji
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.8-17
    • /
    • 2006
  • In this paper, we propose a fault-tolerant control system for the position control and vibration suppression of a flexible arm robot. The proposed control system has a strain gauge sensor signal observer based on a reaction force observer and detects a fault by monitoring an estimated error. In order to improve the estimation accuracy, the plant parameters included in the sensor signal observer are updated by using the strain gauge sensor signal in normal time through the adaptive law. After fault detection, the proposed control system exchanges the faulty sensor signal for the estimated one and switches to a fault mode controller so as to maintain the stability and the control performance. We confirmed the effectiveness of the proposed control system through several experiments.

관측기법을 이용한 갠트리 크레인의 고장 진단 (Fault Detection of Gantry Crane System By using Observation Technique)

  • 김환성;김명규;유삼상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권4호
    • /
    • pp.880-888
    • /
    • 2001
  • This paper presents a fault detection asnd isolation algorithm for highly reliable gantry crane system. The algorithm is constructed by multiple PI observer technique, and the magnitude of actuator fault can be estimated by using integrated estimated output error. Also, the complex actuator and /or sensor fault can be detected and isolated by monitoring the integrated error and the estimated state error. Considering the actuator and/or the sensor fault, we verify that these fault can be detected and isolated through simulation. Lastly, we show a simple reliable control method by using the detected fault signal and an added observer.

  • PDF

웨이브렛 계수를 이용한 고저항 지락고장 감시데이터 산출방법 연구 (A Study on the Developing Method of HIF Monitoring Data using Wavelet Coefficient)

  • 정영범;정연하;김길신;이병성;배승철
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.155-163
    • /
    • 2013
  • As the increasing HIF(High Impedance Fault) with the arc cannot be easily detected for the low fault current magnitude compared to actual load in distribution line. However, the arcing current shows that the magnitude varies with time and the signal is asymmetric. In addition, discontinuous changes occur at starting point of arc. Considering these characteristics, wavelet transformation of actual current data shows difference between before and after the fault. Althogh raw data(detail coefficient) of wavelet transform may not be directly applied to HIF detection logic in a device, there are several developing methods of HIF monitoring data using the original wavelet coefficients. In this paper, a simple and effective developing methods of HIF monitoring data were analized by using the signal data through an actual HIF experiment to apply them to economic devices. The methods using the sumation of the wavelet coefficient squares in one cycle of the fundamental frequency as the energies of the wavelet coefficeits and the sumation of the absolute values were compared. Besides, the improved method which less occupies H/W resouces and can be applied to field detection devices was proposed. and also Verification of this HIF detection method through field test on distribution system in KEPCO power testing center was performed.

Fault Detection and Classification with Optimization Techniques for a Three-Phase Single-Inverter Circuit

  • Gomathy, V.;Selvaperumal, S.
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1097-1109
    • /
    • 2016
  • Fault detection and isolation are related to system monitoring, identifying when a fault has occurred, and determining the type of fault and its location. Fault detection is utilized to determine whether a problem has occurred within a certain channel or area of operation. Fault detection and diagnosis have become increasingly important for many technical processes in the development of safe and efficient advanced systems for supervision. This paper presents an integrated technique for fault diagnosis and classification for open- and short-circuit faults in three-phase inverter circuits. Discrete wavelet transform and principal component analysis are utilized to detect the discontinuity in currents caused by a fault. The features of fault diagnosis are then extracted. A fault dictionary is used to acquire details about transistor faults and the corresponding fault identification. Fault classification is performed with a fuzzy logic system and relevance vector machine (RVM). The proposed model is incorporated with a set of optimization techniques, namely, evolutionary particle swarm optimization (EPSO) and cuckoo search optimization (CSO), to improve fault detection. The combination of optimization techniques with classification techniques is analyzed. Experimental results confirm that the combination of CSO with RVM yields better results than the combinations of CSO with fuzzy logic system, EPSO with RVM, and EPSO with fuzzy logic system.

지적보전시스템의 실시간 다중고장진단 기법 개발 (Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System)

  • 배용환
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

차세대 RNSS 감시국을 위한 고장 검출 알고리즘 개발 방안 (Development Approach of Fault Detection Algorithm for RNSS Monitoring Station)

  • 정다님;이수민;이찬희;김의호;최헌호
    • 한국항행학회논문지
    • /
    • 제28권1호
    • /
    • pp.1-14
    • /
    • 2024
  • 위치, 항법 및 시각정보 서비스를 제공하는 위성항법시스템은 위성시스템, 지상시스템, 사용자시스템으로 구성된다. 지상시스템의 구성요소인 감시국은 위성항법시스템의 서비스 제공 및 고장 검출을 위해, 위성항법 신호를 연속적으로 수집하고 위성의 SIS (signal-in-space) 고장과 수신기 및 다중반사파를 포함한 Local 고장과 같은 신호 이상을 검출하여 수신한 데이터와 검출 결과를 중앙처리국으로 전송하는 역할을 한다. 본 논문에서는 기존 위성항법시스템 감시국의 수신한 위성 신호에 대한 품질 판단 및 고장 검출을 위한 주요 모니터와 측정치 전처리 과정을 소개하고, 이를 활용하여 차세대 지역 위성항법시스템 (RNSS; regional navigation satellite system) 감시국의 구성요소와 아키텍처 및 알고리즘 개발 방안을 제시하였다.

이산 웨이블릿 변환과 신경회로망을 이용한 FRTU의 고장판단 능력 개선에 관한 연구 (A Study for the Improvement of the Fault Decision Capability of FRTU using Discrete Wavelet Transform and Neural Network)

  • 홍대승;고윤석;강태구;박학열;임화영
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1183-1190
    • /
    • 2007
  • This paper proposes the improved fault decision algorithm using DWT(Discrete Wavelet Transform) and ANNs for the FRTU(Feeder Remote Terminal Unit) on the feeder in the power distribution system. Generally, the FRTU has the fault decision scheme detecting the phase fault, the ground fault. Especially FRTU has the function for 2000ms. This function doesn't operate FI(Fault Indicator) for the Inrush current generated in switching time. But it has a defect making it impossible for the FI to be operated from the real fault current in inrush restraint time. In such a case, we can not find the fault zone from FI information. Accordingly, the improved fault recognition algorithm is needed to solve this problem. The DWT analysis gives the frequency and time-scale information. The neural network system as a fault recognition was trained to distinguish the inrush current from the fault status by a gradient descent method. In this paper, fault recognition algorithm is improved by using voltage monitoring system, DWT and neural network. All of the data were measured in actual 22.9kV power distribution system.

에이젼트기반 실시간 고장진단 시뮬레이션기법 (Agent based real-time fault diagnosis simulation)

  • 배용환;이석희;배태용;이형국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.670-675
    • /
    • 1994
  • Yhis paper describes a fault diagnosis simulation of the Real-Time Multiple Fault Dignosis System (RTMFDS) for forcasting faults in a system and deciding current machine state from signal information. Comparing with other diagnosis system for single fault,the system developed deals with multiple fault diagnosis,comprising two main parts. One is a remotesignal generating and transimission terminal and the other is a host system for fault diagnosis. Signal generator generate the random fault signal and the image information, and send this information to host. Host consists of various modules and agents such as Signal Processing Module(SPM) for sinal preprocessing, Performence Monotoring Module(PMM) for subsystem performance monitoring, Trigger Module(TM) for multi-triggering subsystem fault diagnosis, Subsystem Fault Diagnosis Agent(SFDA) for receiving trigger signal, formulating subsystem fault D\ulcornerB and initiating diagnosis, Fault Diagnosis Module(FDM) for simulating component fault with Hierarchical Artificial Neural Network (HANN), numerical models and Hofield network,Result Agent(RA) for receiving simulation result and sending to Treatment solver and Graphic Agent(GA). Each agent represents a separate process in UNIX operating system, information exchange and cooperation between agents was doen by IPC(Inter Process Communication : message queue, semaphore, signal, pipe). Numerical models are used to deseribe structure, function and behavior of total system, subsystems and their components. Hierarchical data structure for diagnosing the fault system is implemented by HANN. Signal generation and transmittion was performed on PC. As a host, SUN workstation with X-Windows(Motif)is used for graphic representation.

  • PDF

정상 압연 구간의 특징을 이용한 판 파단의 상태감시 (Condition Monitoring for Coil Break Using Features of Stationary Rolling Region)

  • 오준석;양승욱;심민찬;와휴 세사렌드라;양보석;이원호
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1252-1259
    • /
    • 2009
  • Due to the international competition and global pressure, the roll speed is increased. However, higher speeds increase the power density in the process as well as the plant's potential to react with vibrations. Under certain operating conditions, vibrations may occur, which again cause chattermarks, strip rupture or coil break fault. The appropriate condition monitoring is needed to improve product quality and availability. The aim of condition monitoring is to reduce maintenance costs, increase productivity and improve product quality. This paper proposes a condition monitoring tool designed for the classification of coil break fault. This method is used to cold rolling mill for faults monitoring based on vibration and motor current signals. The results show that the performance of classification has high accuracy based on experimental work.