• Title/Summary/Keyword: Fault Discriminant

Search Result 16, Processing Time 0.026 seconds

A Study on the Discriminate between Magnetizing Inrush and Internal Faults of Power Transformer by Artificial Neural Network (신경회로망에 의한 변압기의 여자돌입과 내부고장 판별에 관한 연구)

  • Park, Chul-Won;Cho, Phil-Hun;Shin, Myong-Chul;Yoon, Sug-Moo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.606-609
    • /
    • 1995
  • This paper presents discriminate between magnetizing inrush and internal faults of power transformer by artificial neural networks trained with preprocessing of fault discriminant. The proposed neural networks contain multi-layer perceptron using back-propagation learning algorithm with logistic sigmoid activation function. For this training and test, we used the relaying signals obtained from the EMTP simulation of model power system. It is shown that the proposed transformer protection system by neural networks never misoperated.

  • PDF

Modification of acceleration signal to improve classification performance of valve defects in a linear compressor

  • Kim, Yeon-Woo;Jeong, Wei-Bong
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.71-79
    • /
    • 2019
  • In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.

Detection of Denitrification Completion Using Pattern Matching Method in Sequencing Batch Reactor(SBR) (연속회분식반응기에서 패턴매칭방법을 이용한 탈질완료 감지 알고리즘 개발)

  • Kim, Ye-Jin;Ahn, Yu-Ga;Shin, Jung-Phil;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.944-949
    • /
    • 2007
  • The profiles of on-line sensors such as DO, ORP and pH can provide useful information about pollutant removal reaction in sequencing batch reactor. For detection of denitrification completion, the nitrate hee point from ORP profile has been considered as a main indicator of denitrification completion. However, many researchers pointed out that the nitrate knee usually disappeared been the progress of denitrification is so fast and it makes the fault at detection of denitrification completion. In this paper, dynamic time warping(DTW) method and discriminant analysis were used to detect and isolate the profiles of two cases, denitrification completed and uncompleted. As the results, proposed methods can detect state of denitrification successfully.

GAM: A Criticality Prediction Model for Large Telecommunication Systems (GAM: 대형 통신 시스템을 위한 위험도 예측 모델)

  • Hong, Euy-Seok
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.33-40
    • /
    • 2003
  • Criticality prediction models that determine whether a design entity is fault-prone or non fault-prone play an important role in reducing system development costs because the problems in early phases largely affect the quality of the late products. Real-time systems such as telecommunication systems are so large that criticality prediction is mere important in real-time system design. The current models are based on the technique such as discriminant analysis, neural net and classification trees. These models have some problems with analyzing causes of the prediction results and low extendability. This paper builds a new prediction model, GAM, based on Genetic Algorithm. GAM is different from other models because it produces a criticality function. So GAM can be used for comparison between entities by criticality. GAM is implemented and compared with a well-known prediction model, BackPropagation neural network Model(BPM), considering Internal characteristics and accuracy of prediction.

  • PDF

Early Criticality Prediction Model Using Fuzzy Classification (퍼지 분류를 이용한 초기 위험도 예측 모델)

  • Hong, Euy-Seok;Kwon, Yong-Kil
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.5
    • /
    • pp.1401-1408
    • /
    • 2000
  • Critical prediction models that determine whether a design entity is fault-prone or non fault-prone play an important role in reducing system development cost because the problems in early phases largely affected the quality of the late products. Real-time systems such as telecommunication system are so large that criticality prediction is more important in real-time system design. The current models are based on the technique such as discriminant analysis, neural net and classification trees. These models have some problems with analyzing cause of the prediction results and low extendability. In this paper, we propose a criticality prediction model using fuzzy rulebase constructed by genetic algorithm. This model makes it easy to analyze the cause of the result and also provides high extendability, high applicability, and no limit on the number of rules to be found.

  • PDF

Psychological and behavioral profiles of adolescent on probation and high school students: With specific focus on moral disengagement, self-efficacy, delinquency, and academic achievement (보호관찰 청소년과 일반 청소년의 심리 행동특성 비교: 도덕적 이탈, 자기효능감, 가출, 학업성취를 중심으로)

  • Youngshin Park;Uichol Kim;Sooyeon Tak
    • Korean Journal of Culture and Social Issue
    • /
    • v.12 no.2
    • /
    • pp.45-76
    • /
    • 2006
  • This article compares the psychological and behavioral profiles of adolescents on probation and high school students. A total of 253 adolescents on probation and 257 high school students completed an open-ended questionnaire developed by the present researchers and structured questionnaire that assessed moral disengagement and self-efficacy developed by Bandura (1995), delinquent behavior and academic achievement. Adolescents on probation reported that they engaged in delinquent behavior due to the fault of others and they were angry for being forced to be on probation. They are not likely to take responsibility and morally disengage from their delinquent actions. When compared to high school students, adolescents on probation are likely to report low self-efficacy, low academic grade, and less likely to feel proud of themselves. They are more likely to meet their friends in Internet and video game rooms and less likely to focus on academic achievement. Results of ANCOVA indicate that adolescents on probation have higher scores on moral disengagement, social efficacy, but lower score on efficacy for self-regulated learning. They are more likely to run away from home and have lower academic grade. The results of the discriminant analysis indicate that running away from home, social efficacy and moral disengagement are predictive of adolescents on probation and academic achievement and efficacy for self-regulated learning are predictive of high school students.