• Title/Summary/Keyword: Fault Diagnosis and Prognosis

Search Result 16, Processing Time 0.037 seconds

Machine Fault Diagnosis and Prognosis: The State of The Art

  • Tung, Tran Van;Yang, Bo-Suk
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.61-71
    • /
    • 2009
  • Machine fault diagnostic and prognostic techniques have been the considerable subjects of condition-based maintenance system in the recent time due to the potential advantages that could be gained from reducing downtime, decreasing maintenance costs, and increasing machine availability. For the past few years, research on machine fault diagnosis and prognosis has been developing rapidly. These publications covered in the wide range of statistical approaches to model-based approaches. With the aim of synthesizing and providing the information of these researches for researcher's community, this paper attempts to summarize and classify the recent published techniques in diagnosis and prognosis of rotating machinery. Furthermore, it also discusses the opportunities as well as the challenges for conducting advance research in the field of machine prognosis.

A Study On The Embedded Fault Diagnosis System Implementation (임베디드기반 자동고장진단 시스템 구축에 대한 연구)

  • Kim, Han-Gyu;Jang, Ju-Su
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.287-291
    • /
    • 2013
  • Fault Diagnosis is a process of detecting and isolating faults in a system. On demanding for safety and high reliability systems make it important for some reasons such as economical and environmental incentives. Especially embedded technology and IT technology combined with precise sensing techniques has been doing well developed and applied to fault diagnosis and prognosis in industrial systems like as automotive, ship, heavy industry and aerospace as well. This paper, as an empirical application of diesel engine, presents a method how to get raw data from physical systems, what to consider for successful implementation and which theoretic mathematical models should be applied. In a sense of system level Adaptive Filtering (we call Modified Kalman Filter) and a unit of part level Hidden Markov Process was developed and applied.

Study for Fault Diagnosis Methodologies Using Diagnosis for Monopropellant Propulsion System (단일 추진시스템 진단을 통한 고장진단 방법론에 관한 연구)

  • Song, Chang-Hwan;Lee, Young-Jin;Ku, Kyung-Wan;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2041_2042
    • /
    • 2009
  • The diagnostic/prognostic problems for condition based maintenance or Prognostics and Health Management has been used. Primary objectives of diagnosis/prognosis are maximizing system availability and minimizing downtime from fault isolation through more effective troubleshooting efforts. Diagnosis aims to detect the onset of failures to improve system performance and reduce life cycle cost by reducing the failure time. The prognosis can reduce operational and support total ownership cost and improve safety of machinery and complex systems. In this Paper, a fault diagnosis methodology has been described using a monopropellant propulsion system model as a test bench.

  • PDF

Model-based Analysis of Cell-to-Cell Imbalance Characteristic Parameters in the Battery Pack for Fault Diagnosis and Over-discharge Prognosis (배터리 팩 내부 과방전 사전 진단을 위한 모델기반 셀 간 불균형 특성 파라미터 분석 연구)

  • Park, Jinhyeong;Kim, Jaewon;Lee, Miyoung;Kim, Byoung-Choul;Jung, Sung-Chul;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.381-389
    • /
    • 2021
  • Most diagnosis approaches rely on historical failure data that might not be feasible in real operating conditions because the battery voltage and internal parameters are nonlinear according to various operating conditions, such as cell-to-cell configuration and initial condition. To overcome this issue, the estimator and the predictor require integrated approaches that consider comprehensive data, with the degradation process and measured data taken into account. In this paper, vector autoregressive models (VAR) with various parameters that affect overdischarge to the cell in the battery pack were constructed, and the cell-to-cell parameters were identified using an adaptive model to analyze the influence of failure prognosis. The theoretical analysis is validated using experimental results in terms of the feasibility and advantages of fault prognosis.

A Study on Diagnosis and Prognosis for Machining Center Main Spindle Unit (머시닝센터 주축 고장예측에 관한 연구)

  • Lee, Tae-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.134-140
    • /
    • 2016
  • Main Spindle System has effect on performance of machine tools and working quality as well as is required of high reliability. Especially, it takes great importance in producing automobiles which includes a large number of working processes. However, main spindle unit in Machine tools are often cases where damage occurs do not meet the design life due to driving in harsh environments. This is when excessive maintenance and repair of machine tools or for damage stability has resulted in huge economic losses. Therefore, this studying propose a method of accelerated life test for diagnosing and prognosis the state of life assessment main spindle system. Time status monitoring of diagnostic data - through the analysis of the frequency band signals were carried out inside the main spindle bearing condition monitoring and fault diagnosis.

Fault Detection and Identification of Induction Motors with Current Signals Based on Dynamic Time Warping

  • Bae, Hyeon;Kim, Sung-Shin;Vachtsevanos, George
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.102-108
    • /
    • 2007
  • The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis, and prognosis are of increasing importance. This study introduces a technique to detect and identify faults in induction motors. Stator currents were measured and stored by time domain. The time domain is not suitable for representing current signals, so wavelet transform is used to convert the signal; onto frequency domain. The raw signals can not show the significant feature, therefore difference values are applied. The difference values were transformed by wavelet transform and the features are extracted from the transformed signals. The dynamic time warping method was used to identify the four fault types. This study describes the results of detecting fault using wavelet analysis.

Fault Detection and Diagnosis of Faulty Bearing and Broken Rotor Bar of Induction Motors Based on Dynamic Time Warping (DTW를 이용한 유도전동기 베어링 및 회전자봉 고장진단)

  • Lee, Jae-Hyun;Bae, Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.95-102
    • /
    • 2007
  • The issues of preventive and condition-based maintenance, online monitoring, system fault detection, diagnosis and prognosis are of increasing importance. This study introduces a technique to detect and identify faults in induction motors. Stator currents were measured and stored by time domain. The time domain is not suitable for representing current signals, so wavelet transform is used to convert the signals onto frequency domain. The raw signals can not show the significant feature, therefore difference values between the signal of the health conditions and that of the fault conditions are applied. The difference values were transformed by wavelet transform and the features are extracted from the transformed signals. The dynamic time warping method was used to identify the fault type. This study describes the results of detecting fault using wavelet analysis.

A Study on Feasibility Evaluation for Prognosis Systems based on an Empirical Model in Nuclear Power Plants

  • Lee, Soo Ill
    • International Journal of Safety
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This paper introduces a feasibility evaluation method for prognosis systems based on an empirical model in nuclear power plants. By exploiting the dynamical signature characterized by abnormal phenomena, the prognosis technique can be applied to detect the plant abnormal states prior to an unexpected plant trip. Early $operator^{\circ}{\emptyset}s$ awareness can extend available time for operation action; therefore, unexpected plant trip and time-consuming maintenance can be reduced. For the practical application in nuclear power plant, it is important not only to enhance the advantages of prognosis systems, but also to quantify the negative impact in prognosis, e.g., uncertainty. In order to apply these prognosis systems to real nuclear power plants, it is necessary to conduct a feasibility evaluation; the evaluation consists of 4 steps (: the development of an evaluation method, the development of selection criteria for the abnormal state, acquisition and signal processing, and an evaluation experiment). In this paper, we introduce the feasibility evaluation method and propose further study points for applying prognosis systems from KHNP's experiences in testing some prognosis technologies available in the market.

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.