• 제목/요약/키워드: Fault Detection and Classification (FDC)

Search Result 15, Processing Time 0.028 seconds

Sensitivity Enhancement of RF Plasma Etch Endpoint Detection With K-means Cluster Analysis

  • Lee, Honyoung;Jang, Haegyu;Lee, Hak-Seung;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.142.2-142.2
    • /
    • 2015
  • Plasma etch endpoint detection (EPD) of SiO2 and PR layer is demonstrated by plasma impedance monitoring in this work. Plasma etching process is the core process for making fine pattern devices in semiconductor fabrication, and the etching endpoint detection is one of the essential FDC (Fault Detection and Classification) for yield management and mass production. In general, Optical emission spectrocopy (OES) has been used to detect endpoint because OES can be a simple, non-invasive and real-time plasma monitoring tool. In OES, the trend of a few sensitive wavelengths is traced. However, in case of small-open area etch endpoint detection (ex. contact etch), it is at the boundary of the detection limit because of weak signal intensities of reaction reactants and products. Furthemore, the various materials covering the wafer such as photoresist (PR), dielectric materials, and metals make the analysis of OES signals complicated. In this study, full spectra of optical emission signals were collected and the data were analyzed by a data-mining approach, modified K-means cluster analysis. The K-means cluster analysis is modified suitably to analyze a thousand of wavelength variables from OES. This technique can improve the sensitivity of EPD for small area oxide layer etching processes: about 1.0 % oxide area. This technique is expected to be applied to various plasma monitoring applications including fault detections as well as EPD.

  • PDF

플라즈마 임피던스 진단을 이용한 챔버내 부품의 내구성 분석연구

  • Song, Je-Beom;Kim, Jin-Tae;Gang, Sang-U;Sin, Yong-Hyeon;Sin, Jae-Su;Han, Seong-Ho;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.147.1-147.1
    • /
    • 2014
  • 대부분의 반도체공정은 플라즈마 기술을 활용함에 따라서 진공공정장비 부품은 플라즈마 이온, 활성기체, 고온 공정에 노출 된다. 또한 장시간 플라즈마 공정에 노출이 되면서 부품 내구성이 떨어지기 때문에 내플라즈마성이 강한 재료를 코팅하여 사용하고 있다. 하지만 코팅재료의 종류, 코팅방법에 따라서 내부식성이 각각 다르고 장시간 설비 활용 시 코팅재료가 부식되어 공정특성이 변함에도 불구하고 현재 Fault Detection and Classification (FDC) 기술에서는 모니터링이 어려운 문제점이 있다. 본 연구에서는 공정특성을 플라즈마 임피던스 변수로 모니터링 하여 코팅부품의 상태에 따른 플라즈마 공정변화를 모니터링 가능한 신규 플라즈마 공정모사용 평가 장비를 소개하고자한다.

  • PDF

The diagnosis of Plasma Through RGB Data Using Rough Set Theory

  • Lim, Woo-Yup;Park, Soo-Kyong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.413-413
    • /
    • 2010
  • In semiconductor manufacturing field, all equipments have various sensors to diagnosis the situations of processes. For increasing the accuracy of diagnosis, hundreds of sensors are emplyed. As sensors provide millions of data, the process diagnosis from them are unrealistic. Besides, in some cases, the results from some data which have same conditions are different. We want to find some information, such as data and knowledge, from the data. Nowadays, fault detection and classification (FDC) has been concerned to increasing the yield. Certain faults and no-faults can be classified by various FDC tools. The uncertainty in semiconductor manufacturing, no-faulty in faulty and faulty in no-faulty, has been caused the productivity to decreased. From the uncertainty, the rough set theory is a viable approach for extraction of meaningful knowledge and making predictions. Reduction of data sets, finding hidden data patterns, and generation of decision rules contrasts other approaches such as regression analysis and neural networks. In this research, a RGB sensor was used for diagnosis plasma instead of optical emission spectroscopy (OES). RGB data has just three variables (red, green and blue), while OES data has thousands of variables. RGB data, however, is difficult to analyze by human's eyes. Same outputs in a variable show different outcomes. In other words, RGB data includes the uncertainty. In this research, by rough set theory, decision rules were generated. In decision rules, we could find the hidden data patterns from the uncertainty. RGB sensor can diagnosis the change of plasma condition as over 90% accuracy by the rough set theory. Although we only present a preliminary research result, in this paper, we will continuously develop uncertainty problem solving data mining algorithm for the application of semiconductor process diagnosis.

  • PDF

Enhancement of the Virtual Metrology Performance for Plasma-assisted Processes by Using Plasma Information (PI) Parameters

  • Park, Seolhye;Lee, Juyoung;Jeong, Sangmin;Jang, Yunchang;Ryu, Sangwon;Roh, Hyun-Joon;Kim, Gon-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.132-132
    • /
    • 2015
  • Virtual metrology (VM) model based on plasma information (PI) parameter for C4F8 plasma-assisted oxide etching processes is developed to predict and monitor the process results such as an etching rate with improved performance. To apply fault detection and classification (FDC) or advanced process control (APC) models on to the real mass production lines efficiently, high performance VM model is certainly required and principal component regression (PCR) is preferred technique for VM modeling despite this method requires many number of data set to obtain statistically guaranteed accuracy. In this study, as an effective method to include the 'good information' representing parameter into the VM model, PI parameters are introduced and applied for the etch rate prediction. By the adoption of PI parameters of b-, q-factors and surface passivation parameters as PCs into the PCR based VM model, information about the reactions in the plasma volume, surface, and sheath regions can be efficiently included into the VM model; thus, the performance of VM is secured even for insufficient data set provided cases. For mass production data of 350 wafers, developed PI based VM (PI-VM) model was satisfied required prediction accuracy of industry in C4F8 plasma-assisted oxide etching process.

  • PDF

Role of Features in Plasma Information Based Virtual Metrology (PI-VM) for SiO2 Etching Depth (플라즈마 정보인자를 활용한 SiO2 식각 깊이 가상 계측 모델의 특성 인자 역할 분석)

  • Jang, Yun Chang;Park, Seol Hye;Jeong, Sang Min;Ryu, Sang Won;Kim, Gon Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.30-34
    • /
    • 2019
  • We analyzed how the features in plasma information based virtual metrology (PI-VM) for SiO2 etching depth with variation of 5% contribute to the prediction accuracy, which is previously developed by Jang. As a single feature, the explanatory power to the process results is in the order of plasma information about electron energy distribution function (PIEEDF), equipment, and optical emission spectroscopy (OES) features. In the procedure of stepwise variable selection (SVS), OES features are selected after PIEEDF. Informative vector for developed PI-VM also shows relatively high correlation between OES features and etching depth. This is because the reaction rate of each chemical species that governs the etching depth can be sensitively monitored when OES features are used with PIEEDF. Securing PIEEDF is important for the development of virtual metrology (VM) for prediction of process results. The role of PIEEDF as an independent feature and the ability to monitor variation of plasma thermal state can make other features in the procedure of SVS more sensitive to the process results. It is expected that fault detection and classification (FDC) can be effectively developed by using the PI-VM.