As product quality and yield are essential factors in semiconductor manufacturing, monitoring the main manufacturing steps is a critical task. For the purpose, FDC(Fault detection and classification) is used for diagnosing fault states in the processes by monitoring data stream collected by equipment sensors. This paper proposes an FDC model based on decision tree which provides if-then classification rules for causal analysis of the processing results. Unlike previous decision tree approaches, we reflect the structural aspect of the data stream to FDC. For this, we segment the data stream into multiple subregions, define structural features for each subregion, and select the features which have high relevance to results of the process and low redundancy to other features. As the result, we can construct simple, but highly accurate FDC model. Experiments using the data stream collected from etching process show that the proposed method is able to classify normal/abnormal states with high accuracy.
Fault detection is necessary for yield enhancement and cost reduction in semiconductor manufacturing. Sensory data acquired from the semiconductor processing tool is too large to analyze for the purpose of fault detection and classification(FDC). We studied the techniques of fault detection using statistical method. Multiple regression analysis smoothly detected faults and can be easy made a model. For real-time and fast computing time, the huge data was analyzed by each step. We also considered interaction and critical factors in tool parameters and process.
Success of semiconductor/LCD industry depends on its yield and quality of product. For the purpose, FDC (Fault Detection and Classification) system is used to diagnose fault state in main manufacturing processes by monitoring time series data collected by equipment sensors which represent various conditions of the equipment. The data set is segmented at the start and end of each product lot processing by a trigger event module. However, in practice, segmented sensor data usually have the features of data asynchronization such as different start points, end points, and data lengths. Due to the asynchronization problem, false alarm (type I error) and missed alarm (type II error) occur frequently. In this paper, we propose a robust process fault detection system by integrating a process event detection method and a similarity measuring method based on dynamic time warping algorithm. An experiment shows that the proposed system is able to recognize abnormal condition correctly under the asynchronous data situation.
With miniaturization of semiconductor, the manufacturing process become more complex, and undetected small changes in the state of the equipment have unexpectedly changed the process results. Fault detection classification (FDC) system that conducts more active data analysis is feasible to achieve more precise manufacturing process control with advanced machine learning method. However, applying machine learning, especially in supervised learning criteria, requires an arduous data labeling process for the construction of machine learning data. In this paper, we propose a semi-supervised learning to minimize the data labeling work for the data preprocessing. We employed equipment status variable identification (SVID) data and optical emission spectroscopy data (OES) in silicon etch with SF6/O2/Ar gas mixture, and the result shows as high as 95.2% of labeling accuracy with the suggested semi-supervised learning algorithm.
반도체(semiconductor) 기술은 1950년대에 집적 회로(integrated circuit, IC)가 발명된 이후 오늘날까지 급속한 발전을 거듭하고 있다. 하나의 완전한 반도체를 제조하기 위해서는 매우 다양하고 긴 공정을 거쳐야 한다. 반도체 제조 생산성을 높이기 위하여 공정들이 종료되기 전에 미리 이상(fault)을 발견하기 위한 이상탐지 및 분류(fault detection and classification, FDC)에 대한 많은 연구가 진행되고 있다. 이를 위하여 다양한 반도체 장비에 갖가지 종류의 센서를 부착하여 일정한 시간 간격으로 원하는 값을 측정한다. 이러한 측정 값은 실수 값들의 연속이므로 시계열(time-series) 데이터의 일종이다. 본 논문에서는 반도체 공정에서의 이상탐지 및 클러스터링을 수행하는 알고리즘을 제안한다. 제안된 알고리즘은 시계열 데이터를 심볼릭 표현법(symbolic representation)으로 변환하여 이상을 탐지하는 기존의 알고리즘을 수정한 것이다. 본 논문의 공헌은 일반적인 시계열 데이터에 대한 기존의 이상탐지 알고리즘을 수정하여 반도체 공정 데이터에 대해서도 활용할 수 있음을 보일 뿐만 아니라, 이상탐지 및 클러스터링의 정확성을 높이는 실험 결과를 제시하는 것이다. 실험 결과, 본 논문에서 제안한 알고리즘은 긍정 오류(false positive) 및 부정 오류(false negative)를 모두 발생하지 않았다.
This paper proposes that the relative transmittance and emission intensity measured via optical emission spectroscopy (OES) is a useful for fault detection of reactive ion etch process. With the increased requests for non-invasive as well as real-time plasma process monitoring for fault detection and classification (FDC), OES is suggested as a useful diagnostic tool that satisfies both of the requirements. Relative optical transmittance and emission intensity of oxygen plasma acquired from various process conditions are directly compared with the process variables, such as RF power, oxygen flow and chamber pressure. The changes of RF power and Pressure are linearly proportional to the emission intensity while the change of gas flow can be detected with the relative transmittance.
Hong, Sang Jeen;Ahn, Jong Hwan;Park, Won Taek;May, Gary S.
Transactions on Electrical and Electronic Materials
/
제14권2호
/
pp.71-77
/
2013
Advanced semiconductor manufacturing technology requires methods to maximize tool efficiency and improve product quality by reducing process variability. Real-time plasma process monitoring and diagnosis have become crucial for fault detection and classification (FDC) and advanced process control (APC). Additional sensors may increase the accuracy of detection of process anomalies, and optical monitoring methods are non-invasive. In this paper, we propose the use of a chromatic data acquisition system for real-time in-situ plasma process monitoring called the Plasma Eyes Chromatic System (PECS). The proposed system was initially tested in a six-inch research tool, and it was then further evaluated for its potential to detect process anomalies in an eight-inch production tool for etching blanket oxide films. Chromatic representation of the PECS output shows a clear correlation with small changes in process parameters, such as RF power, pressure, and gas flow. We also present how the PECS may be adapted as an in-situ plasma arc detector. The proposed system can provide useful indications of a faulty process in a timely and non-invasive manner for successful run-to-run (R2R) control and FDC.
JSTS:Journal of Semiconductor Technology and Science
/
제11권1호
/
pp.1-5
/
2011
To enter next process control, numerous approaches, including run-to-run (R2R) process control and fault detection and classification (FDC) have been suggested in semiconductor manufacturing industry as a facilitation of advanced process control. This paper introduces a novel type of optical plasma process monitoring system, called plasma eyes chromatic system (PECSTM) and presents its potential for the purpose of fault detection. Qualitatively comparison of optically acquired signal levels vs. process parameter modifications are successfully demonstrated, and we expect that PECSTM signal can be a useful indication of onset of process change in real-time for advanced process control (APC).
Traditional semiconductor process control has been performed through statistical process control techniques in a constant process-recipe conditions. However, the complexity of the interior of the etching apparatus plasma physics, quantitative modeling of process conditions due to the many difficult features constraints apply simple SISO control scheme. The introduction of the Advanced Process Control (APC) as a way to overcome the limits has been using the APC process control methodology run-to-run, wafer-to-wafer, or the yield of the semiconductor manufacturing process to the real-time process control, performance, it is possible to improve production. In addition, it is possible to establish a hierarchical structure of the process control made by the process control unit and associated algorithms and etching apparatus, the process unit, the overall process. In this study, the research focused on the methodology and monitoring improvements in performance needed to consider the process management of future developments in the semiconductor manufacturing process in accordance with the age of the APC analysis in real applications of the semiconductor manufacturing process and process fault diagnosis and control techniques in progress.
본 연구는 반도체 제조 공정중 발생하는 센서 데이터를 활용하여 딥러닝기반으로 불량을 예측하는 모델을 제안한다. 반도체 공장에서는 FDC((Fault Detection and Classification)라는 불량을 예측하는 시스템이 있지만, 공정의 복잡도가 높고 센서의 종류가 많아 공정 관리자가 모든 센서의 기준을 설정 및 관리하는데 한계가 있다. 이를 해결하기 위해 공정 설비의 센서 데이터를 딥러닝을 활용하여 학습시켜 센서 기준정보로 임계치를 제공하고, 가공중 발생하는 센서 데이터가 입력되면 정상 여부를 판정하는 모델을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.