• Title/Summary/Keyword: Fault Current Limiting Characteristics

Search Result 239, Processing Time 0.025 seconds

Improvement of Current Limiting and Recovery Characteristics in Series Connection Type SFCL with Added Third Winding (3차권선이 추가된 직렬연결형 초전도한류기의 전류제한 및 회복 특성 향상)

  • Ko, Seok-Cheol;Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.62-68
    • /
    • 2014
  • The series connection type superconducting fault current limiter (SFCL) with added third winding, which was magnetically coupled in one iron core, was proposed. The proposed SFCL was expected to be more improved by just adding third winding into the conventional series connection type SFCL with two coils. To analyze the contribution of the third winding for the current limiting and the recovery characteristics of the SFCL, the short-circuit tests for the series connection type SFCL with the added third winding were performed together with the analysis on its electrical equivalent circuit. From the comparative analysis on the amplitude of the limited fault current and the power burden of the high-TC superconducting (HTSC) element comprising this SFCL, the improved current limiting and recovery characteristics of the series connection type SFCL using the third winding could be confirmed.

Analysis on Current Limiting and Magnetizing Characteristics Due to Winding Locations of Superconducting Fault Current Limiter Using E-I Core (E-I철심을 이용한 변압기형 초전도한류기의 권선 위치에 따른 전류제한 및 자화특성 분석)

  • Kim, Bo-Hee;Choi, Sang-Jae;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.106-110
    • /
    • 2017
  • This paper compared current limiting characteristics of superconducting fault current limiter (SFCL) using E-I core due to the location of windings. Since E-I core has three legs and two magnetic paths, the current limiting characteristics of SFCL were expected to be affected by the installation location of windings, either center leg or right/left leg. To analyze its characteristics, the electrical equivalent circuit of the SFCL were derived and the electromagnetic analysis for the SFCL with the designed structure were performed. From the short-circuit tests, the hysteresis curve and the voltage-current trajectory of the SFCL due to the installation location of windings were extracted and compared each other. The SFCL with windings in the center leg of E-I core was shown to be larger magnetizing inductance compared to the one with windings in the right or left leg of E-I, which was analyzed from the hysteresis curve. In addition, larger decreased fault current right after the fault occurrence in the SFCL with windings in the center leg of E-I core was confirmed than the SFCL with windings in the right or left leg of E-I.

Reliability Enhancement of Hybrid Superconducting Fault Current Limiter adopting Power Electric Device (전력용 반도체 소자를 적용한 하이브리드 초전도 한류기 동작 신뢰도 향상)

  • Sim, J.;Park, K.B.;Lim, S.W.;Kim, H.R.;Lee, B.W.;Oh, I.S.;Hyun, O.B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.57-61
    • /
    • 2007
  • The current limiting characteristics of hybrid SFCL with additional power electronic devices was investigated in order to improve operation reliabilities. The hybrid SFCL developed consists of a superconducting trigger (S/T) part, a fast switch (F/S) module and a current limiting (C/L) part. Although hybrid SFCL had shown a excellent current limiting characteristics, this device was rather vulnerable to the residual arc currents which could exist during fast switch operation. This undesirable arc should be extinguished as quickly as possible in order to implement perfect fault current commutation. So, in order to eliminate the residual arcs between fast switch contacts, the power electronic devices (IGBT or GTO) were connected in series between the S/T part and the interrupter of the F/S module. According to the fault tests conducting with an input voltage of $270\;V_{rms}$ and a fault current of $5\;kA_{rms}$, The power electronic devices could perfectly remove the arc generated between the contacts of the interrupter within 4 ms after the fault occurred. From the test analysis, it was confirmed that the hybrid SFCL could enhance the operation reliability by adopting additional power electronic devices.

Analysis of Current Limiting Characteristics According to Fault Angles in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting (일체화된 삼상 자속구속형 고온초전도 전류제한기의 사고각에 따른 전류제한 특성 분석)

  • Park, Chung-Ryul;Du, Ho-Ik;Yim, Seong-Woo;Hyun, Ok-Bae;Lim, Sung-Hun;Park, Hyoung-Min;Cho, Yong-Sun;Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.255-256
    • /
    • 2006
  • In this paper, we investigated the. characteristics of fault current limiting according to fault angle in the integrated three-phase flux-lock type SFCL in fault types such as the single-line-to-ground fault, the double-line-to-ground fault and the three-line-to-ground fault. When the SFCL is operating under normal condition, the magnetic flux generated between primary and secondary coils of each single phase is canceled out perfectly, so that the impedance of the SFCL is also not generated and the power system can be operated normally without any loss, However, if a fault occurs even in any phase out of three phases, quench happened in SFCL elements and the current flowing secondary coil is restricted abruptly. Finally, the balance of magnetic flux in whole SFCL system is destroyed, and the fault currents in every phase could be limited at the same time irrespective of the fault types. As a result, the developed SFCL in this study were operated normally as expected and the purpose of the integration of 3 phase current limiting was also achieved successfully. However, the fault current limiting characteristics of the SFCL was dependant on the quench characteristics of HTSC elements in each phase, and it was expected that the improvement of the SFCL could be possible through the introduction of HTSC elements which have better critical characteristics.

  • PDF

The Analysis of Characteristics of Flux-Lock Type SFCL with Adjustable Inductance Level in Current Limiting Operation (인덕턴스 조정에 따른 자속구속형의 전류제한특성분석)

  • Lee, Na-Young;Choi, Hyo-Sang;Park, Hyoung-Min;Cho, Yong-Sun;Nam, Gueng-Hyun;Lim, Sung-Hun;Park, Chung-Ryul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.157-158
    • /
    • 2005
  • Superconducting fault currents(SFCLs) are expected to improve not only reliability but also stability of real power systems. The analysis on the single line-to-ground fault of the integrated three phase flux-lock type SFCL, which consists of three flux-lock reactor wound on an iron core in each single phase and three YBCO thin films, was investigated in current limiting operation characteristics. We compared 21turn numbers with 42turn numbers according to wound turn numbers each the coil 2 under the additive polarity winding operation between coil 1 and coil 2. The three phase flux-lock type SFCL using an iron core differently operates general three phase resistive SFCLs. When a single line-to-ground fault occurred, the SFCL's three units were quenched after fault onset. We confirmed effective current limiting operation characteristics with adjustable inductance level.

  • PDF

Double quench and fault current limiting characteristics due to winding ratio of transformer type SFCL with third winding

  • Han, Tae-Hee;Ko, Seok-Cheol;Lim, Sung-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.38-42
    • /
    • 2019
  • To protect the power systems from fault current, the rated protective equipment should be installed. However growth of power system scale and concentration of loads caused the large fault current in power transmission system and distribution system. And capacities of installed protective equipment have been exceeded the due to increase of fault current. This increase is not temporary phenomenon but will be steadily as long as the industry develops. The power system need a counter measurement for safety, so superconducting fault current limiter (SFCL) has been received attention as an effective solutions to reduce the fault current. For the above reasons various type SFCL is studied recently. In this paper, the operational characteristics and power burden of trigger type SFCL is studied. The trigger type SFCL has been used for real system research in many countries. And another trigger type SFCL (double quench trigger type SFCL) is also studied. For this paper, short circuit test is performed.

Analysis of Fault Current limiting Characteristics According to Fault Type in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current limiting (사고종류에 따른 삼상 일체화된 자속구속형 SFCL의 사고전류제한특성 분석)

  • Park, Chung-Ryul;Lim, Sung-Hun;Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.54-56
    • /
    • 2005
  • In this paper, we investigated the quench characteristics of HTSC elements in the integrated three-phase flux-lock type SFCL according to fault types such as the single-line-to-ground fault, the double-line-to-ground fault, the line-to-line fault and the three-line-to-ground fault. The integrated three-phase flux-lock type SFCL was the upgrade version of the single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is operated under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single-phase among three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases quench irrespective of the fault type, which reduces the current of fault phase as well as the current of sound phase. It was observed that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

Analysis on the Protective Coordination with Hybrid Superconducting Fault Current Limiter (반주기 이후 동작 하이브리드 초전도 전류제한기와 보호기기 협조 분석)

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul;Choi, Jong-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1832-1837
    • /
    • 2011
  • The fault current has increased due to the large power demand in power distribution system and network distribution system. To protect the power system effectively from the increased fault current, the superconducting fault current limiter (SFCL) has been notified. However, the conventional SFCL has some problems such as cost, operation, recovery, loss. To solve some problems, the hybrid superconducting fault current limiter using the fast switch was proposed. However, hybrid SFCL also has a problem that is protection coordination in power distribution system with hybrid SFCL. In this paper, the fault current limiting characteristics of hybrid SFCL with first half cycle non-limiting operation according to the fault angle, the resistance of superconducting element, and the magnitude of Current Limit Resistor (CLR) which are the components of hybrid SFCL were analyzed through the experiments.

Characteristics of Matrix Type SFCL with $2{\times}3$ Array According to the Trigger Coil and Shunt Resistance ($2{\times}3$구조의 매트릭스형 초전도 한류기의 트리거 코일 및 션트 저항에 따른 특성)

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.85-89
    • /
    • 2009
  • We investigated the quench characteristics in accordance with increase of turns number of trigger coil and shunt resistance of matrix-type superconducting fault current limiter (SFCL) with $2{\times}3$ array. The matrix-type SFCL consists of the trigger part to apply magnetic field and the current-limiting part to limit fault current. The fault current limiting characteristics according to the increase of magnetic field and applied voltage were nearly same. This is because the application of magnetic field hasn't an affect on total impedance of the SFCL. When turns number of a reactor increased, the voltage difference between two superconducting units in the current-limiting part according was decreased. The resistance difference generated in two superconducting units was also decreased. Therefore, we confirmed that the differences of the critical behaviors between superconducting units were reduced by application of magnetic field. By this results, we could decide the optimum turns number of reactor to apply magnetic field.

Analysis on the Quench Characteristics According to Magnetic Field of the Matrix-Type SFCL with $1{\times}3$ Matrix Structure ($1{\times}3$ 행렬구조를 갖는 매트릭스형 초전도 한류기의 자장유무에 따른 퀜치특성 분석)

  • Oh, Kum-Gom;Cho, Yong-Sun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.343-348
    • /
    • 2008
  • We investigated the quench characteristics accordance with increase of turns and applied voltage of matrix-type superconducting fault current limiter (SFCL) with $1{\times}3$ matrixes. The matrix-type SFCL consists of the trigger part to apply magnetic field and the current-limiting part to limit fault current. The fault current limiting characteristics according to the increase of magnetic field and applied voltage were nearly same. This is because the application of magnetic field has not an affect on total impedance of SFCL. When number of turns of reactor increased, the voltage difference between two superconducting units in the current-limiting part according was decreased. The resistance difference generated in two superconducting units also was decreased. Therefore, we confirmed that the differences of critical behaviors between superconducting units by application of magnetic field were decreased. By this results, we could be decided the optimum number of turns of reactor to apply magnetic field.